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Abstract. 

 

This paper investigates non-synchronous trading and non-trading effects as well as volatility 

clustering in asset returns during event and non-event periods in the Norwegian relatively 

thinly traded equity market. The main objective is to find any periodic differences during events 

in conditional mean and volatility characteristics, which suggest a need for more elaborate 

methodologies for abnormal return and statistical test calculations in classical event studies. 

We employ ARMA-GARCH lag specifications for the conditional mean and volatility based on 

return series containing equal-weighted asset returns from firms either classified in event or 

non-event periods. The Bayes Information Criterion (BIC) preferred ARMA lag specification 

models the non-synchronous trading and non-trading effects while the BIC preferred GARCH 

lag specification models volatility clustering. We employ elaborate specification test statistics 

to report any model misspecification. The empirical specifications show significant ARMA 

coefficients suggesting non-synchronous trading and non-trading in the conditional mean. The 

GARCH specification is strongly significant suggesting volatility clustering. The elaborate 

specification test statistics reject misspecification from the BIC preferred ARMA-GARCH 

residuals. The empirical results for univariate and bivariate specifications suggest that the 

conditional volatility increases strongly in event periods relative to non-event periods. The 

increase in conditional volatility is strongest for event periods most closely centred on the 

announcement date. A heteroscedastic volatility specification is therefore strongly warranted. 

Consequently, our results suggest that non-synchronous trading and volatility clustering may 

have considerable influence on inferences in classical event studies. We therefore advocate a 

model for abnormal return and test statistic calculations in classical event studies, which 

controls for non-synchronous trading and volatility clustering. 

 

Classification: 

Keywords:  Event studies, ARMA-GARCH, Non-synchronous trading, Volatility Clustering 



Chapter VII  09/11/2011 

GRevtn4.doc  Page: VII.2 

1   Introduction 

 

The main purpose of the paper is to show the need to control for event-induced volatility in 

classical event studies (volatility clustering). Many authors have identified the hazards of 

ignoring event-induced volatility. Employing (G)ARCH methodology
1
 for the conditional 

volatility process we can control for conditional heteroscedasticity and changing volatility. This 

investigation aims to show that classical events cause strong increase in the conditional 

volatility applying ARMA-GARCH specifications. The ARMA-GARCH specifications control for 

non-synchronous trading and volatility clustering and should produce residuals that are 

unconditional homoscedastic. Boehmer et al. (1991) warns of event induced volatility in event 

studies and suggests a simple adjustment to the OLS test statistics. Moreover, for the ARMA-

GARCH maximum-likelihood estimation the model produces residuals that are unconditional 

homoscedastic and therefore unadjusted abnormal return test statistics can be employed. 

Hence, if we find a strong event volatility increase relative to non-event volatility, the ARMA-

GARCH methodology is strongly justified.  

 

This paper does not investigate the cause of event-induced volatility
2
 but rather show the need 

to control for changing volatility. We employ a sample of mergers and acquisitions in the 

Norwegian thinly traded equity market. To determine the level of the volatility in event and non-

event periods we form return series employing the event and non-event period firm samples. 

Event series are formed from event period firms in three different event windows. Non-event 

series are formed from non-event period firms where the return series are all collected from 

periods outside the largest event window. Our objective is to establish the mean and volatility 

characteristics for all these event and non-event series. The time series models must contain 

several elaborate features to avoid misspecification.  

 

Firstly, in thinly traded markets non-synchronous trading may produce serious biases in the 

moments and co-moments and therefore may produce spurious relationships (Campbell, 

1997 and Solibakke, 2000a, 2000b). To control for non-synchronous trading we employ an 

ARMA(p,q) lag specification in the conditional mean. The lag specifications for p and q are the 

BIC preferred (Schwarz, 1978) model. Secondly, the volatility of all event and non-event 

portfolios is specified employing (G)ARCH formulations, to control for volatility clustering and 

changing volatility. The conditional volatility are modelled applying a BIC preferred ARMA 

(m,n) lag specification for squared residuals from the conditional mean specification. The 

volatility series are therefore readily available from the estimations. Thirdly, asymmetric 

volatility is modelled as shown by Glosten et al. (1993) and Nelson (1991). Finally, 

leptokurtosis is found in the Norwegian equity market as in all other international equity 

markets. Hence, we employ a univariate ARMA-GARCH lag specification with student t-

                                              
1
 An alternative methodology is Semi-Non-Parametric (Gallant & Tauchen, 1989, 1991).  

2
 Brown et al. (1988,1989) 
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density distributions (Bollerslev 1986/87) and bivariate GARCH-in-Mean models (Engle & 

Kroner, 1995) with multi-normal distributions.  

 

Our specification tests show that both the univariate and bivariate ARMA-GARCH models 

filters all non-synchronous trading and volatility clustering in event and non-event periods. 

Hence, as our results suggest no data dependence in the return series, we can report no 

model misspecification. Moreover, if this result maintains its validity into the market model we 

have obtained a sounder basis for abnormal return calculations in event-studies employing 

unadjusted test statistics. 

 

The investigation reports a strongly higher conditional volatility in event periods relative to non-

event periods for both selling and acquiring firms. Therefore the investigation proposes new 

models for classical event studies in the future. 

 

This paper extends previous works in several areas. Firstly, the increase in conditional 

volatility from non-event to event periods is measured employing both univariate and bivariate 

subordinated stochastic volatility specifications (Clark, 1973, Epps and Epps, 1976, Tauchen 

and Pitts, 1983). The bivariate ARMA-GARCH model is employed to better specify market 

dynamics and cross-autocorrelation in mean and volatility. Secondly, the leptokurtosis in 

distributions often found in stock markets are considered using student-t density log-likelihood 

functions. Thirdly, we employ asymmetric conditional volatility parameters for all estimations. 

Fourthly, elaborate specification tests are employed for model misspecification. Finally, we 

propose a new event-study methodology controlling for non-synchronous trading and volatility 

clustering employing the market model in classical event studies. 

 

The remainder of the article is organised as follows. Section 2 defines the event periods, 

describes the equal-weighted series approach in event and non-event periods and defines the 

conditional mean and volatility equations from the family of ARMA-GARCH lag specification 

models. Section 3 describes the empirical data and the time series adjustment procedures. 

Section 4 reports the univariate results from the analysis. Section 5 reports the bivariate 

estimation results. Section 6 investigates the significance of the conditional volatility increase 

applying likelihood ratio tests. As Section 6 report significant changes, Section 7 suggests two 

time-series specifications for classical event studies. Finally Section 7 summarises our 

findings. 
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2 Definitions and Methodology 

 

2.1 The Event Period 

 

In event studies, the objective is to examine the market’s response through the observation of 

security prices around such events. For merger and acquisitions
3
 it is related to the release of 

information to market participants through the financial press. Normal or predicted returns for 

an asset are those returns that are expected if no event occurs. The time line for a typical 

event study for a mergers and acquisitions case may be represented as follows 

 

tb    tpre   te         tpost 

        Estimation Period  Event Period  

 

where tb is the first period used in the estimation of a normal security return; tpre is the first 

period used in the calculation of abnormal returns; te is the event date; and tpost is the last 

period used in the calculation of abnormal returns. In the literature we usually find a selection 

of tpre equal to -40 days and tpost equal to + 40 days relative to te (day 0). Hence, the event 

period will in this case consist of 80 days. Our study applies also narrower event periods. We 

define event periods of tpre equal to -20 (-10) days and tpost equal to + 5 (+1) days relative to te 

(day 0). Note that the length of the estimation period is not relevant for this portfolio study. 

However, in a classical event study the length of the estimation period is an important decision 

to make.  

 

2.2 Event and Non-Event Return Series 

 

To study any change in return and volatility characteristics from non-event to event series we 

form equally weighted portfolios from firm return series classified in event periods and non-

event periods. The classification of an event period follows the definitions of tpre and tpost in 

section 2.1. All firms that by definition are categorized into a specific event period are included 

in the sample and the returns are averaged over the whole sample for each day relative to te. 

These calculations for portfolio returns becomes PR
N

Rc t

c t

c t i

i

Nc t

,

,

, ,

,

 



1

1

where Rc,t,i is the 

continuously compounded return for portfolio c, day t, asset i . PRc,t is portfolio c’s return at 

date t. Nc,t is the number of assets in portfolio c at date t.  

 

Note that the number of firms Nc,t may change over time in especially the event series. 

Therefore, a possible and permissible value for Nc,t is zero. The time series will set these 

dates to missing observations.  
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The definition of non-event series follows this procedure. Firstly, we find the average number 

of firms over all event dates for the widest event window {-40,+40} days relative to te and 

employ this number of assets for the non-event series. The returns are calculated as above 

using a random sample of firms for the non-event sample. Return series characteristics are 

reported in Section 4 below.  

 

Finally, note that model specification assumes an ergodic and stationary return series. An 

ergodic return series suggest that the sample moments for finite stretches of the realisation 

approach their population counterparts as the length of the realisation becomes infinite. A 

stationary time series mean that the process is in a particular state of “statistical equilibrium” 

(Box and Jenkins, 1976). Strict stationary is obtained if its properties are unaffected by a 

change in time origin. In Section 3 we will apply a special adjustment procedures to secure 

ergodic and stationary returns for all employed series. 

 

2.3   The Conditional Mean and Volatility Specifications 

 

We will apply the ARMA-GARCH specification for estimation of the mean and volatility 

equations. The methodology applies conditional models where non-synchronous trading may 

be modelled in the conditional means and volatility clustering may be modelled in the 

conditional volatility. The ARMA methodology may be studied in detail in Mills (1990), while 

(G)ARCH specifications may be studied in Engle (1982) and Bollerslev (1986, 1987). In the 

international finance literature we find a high number of papers with origin from these pioneer 

works. For a small sample we refer to Bollerslev et al. (1987,1992), Engle et al. (1986, 1995), 

Nelson (1991) og deLima (1995a, 1995b). Moreover, Glosten et al. (1993) extended the 

GARCH model to truncated GARCH to account for the leverage effects. The ARMA-GARCH 

methodology may be univariate og multivariate. As event studies apply the market model to 

specify normal returns the multivariate model may be more relevant than the univariate model.  

 

                                                                                                                                  
3
 For an OLS study of abnormal returns in Norway see Eckbo and Solibakke, 1992. For an 

international review Eckbo, 1987. 
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2.3.1 The univariate and asymmetric ARMA-GARCH-in-Mean specification 

 

The general asymmetric ARMA(p,q) - GARCH(m,n) -in-Mean specification of the conditional 

mean and volatility can be defined as follows:  
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where Rj,t is the portfolio j’s return in period t; j,t is a random variable (residual) distributed as 

either normal N(0,
2
) or student-t D(0,

2
,) where  is the degree of freedom;I,j is lag i for the 

moving average or non-synchronous trading parameters of portfolio j in the conditional mean 

equation (1);j,i,t measures the leverage effect, mj,0 is the constant term for portfolio j in the 

conditional volatility equation; aj,i is lag i for auto-regressive parameters for shocks of portfolio 

j; and bj,i is lag i for the conditional volatility parameters of portfolio j. The lag lengths p, q, m 

and n are determined by the BIC criterion (Schwarz, 1978) for all series. 

 

Linear models have constant conditional volatility whatever the information of observed 

returns. In our approach the conditional volatility may vary but the unconditional volatility is 

constant. Hence, the equations above lead naturally to the consideration of non-linear 

stochastic processes and the (G)ARCH-in-Mean model
4
 (Engle, Lillien and Robbins (1987)) 

show a departure from white noise. Specifically, in our model we allow the serially correlated 

errors to be modelled as a moving average (MA(q)) process to capture the effect of non-

synchronous trading, while the innovations j,t can be assumed to follow either a conditional 

normal - or a conditional student-t distribution. The conditional volatility enters the mean 

equation (in-Mean). Estimation usually applies the BHHH (1974) algorithm. 

 

2.3.2   The bivariate and asymmetric ARMA-GARCH-in-Mean specification 

 

As event studies apply the market model and therefore an overall market index to calculate 

normal returns, the univariate ARMA-GARCH models may not count for total market 

dynamics. Moreover, the index series may also contain non-synchronous trading and volatility 

clustering. Hence, to control for these market structure effects we employ a bivariate 

specification between return series and the overall index series. We employ a value-weighted 

index as a proxy for the market portfolio.  

 

                                              
4
 For applications see Bollerslev, Chou, Kroner, 1992. 
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To model this bivariate specification we apply the MGARCH model. The Multivariate GARCH-

in-Mean model (BEKK-formulation)
5
 is defined as (in vector format)  

 

 Rt =  +   1 
.
 Rt-1 +  

.
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constants in the conditional mean. m, A1, B1 are 2 x 2 parameter matrices, and the elements 

of the conditional volatility matrix Ht are hi,t = vart (Ri,t), hi,M,t= covt (Ri,t, RM,t), and  

hM,t = vart (RM,t). The 1 parameter specifies non-synchronous trading in the bivariate system 

of mean equations. The 11 is the ARCH-in-Mean parameter in the equation of Ri,t that 

corresponds to hi,t,  1M is the ARCH-in-Mean parameter in the equation of Ri,t that 

corresponds to hi,M,t and 13 is the ARCH-in-Mean parameter in the equation of Ri,t that 

corresponds to hM,t. 21 is the ARCH-in-Mean parameter in the equation of RM,t that 

corresponds to hi,t, and MM is the ARCH-in-Mean parameter in the equation of RM,t that 

corresponds to hM,t. Note that the conditional volatility specification for Ht in (6) guarantees the 

positive definiteness of Ht and allows feedback between the volatility of the individual portfolio 

and the market. m is a lower triangular matrix. Finally, we extend this model to measure 

asymmetric volatility applying the GJR methodology (Glosten et al., 1993) in the bivariate 

estimation. Hence, we extend the above model by the parameters 1 for asymmetry in the 

portfolio and 2 for asymmetry in the market index. Note that this bivariate ARMA(1,1)-

GARCH(1,1) can be extended to any lag lengths p, q, m and n as specified for univariate 

specifications. The Bayes Information Criterion (BIC) is applied for both ARMA (mean) and 

GARCH (volatility) lag specifications. As for univariate GARCH estimations, the BHHH (1974) 

algorithm is applied for estimation. 

 

3  Empirical Data sources and Time Series Adjustments 

 

The study uses daily continuously compounded returns (

1

ln
t

t

P

P
) of individual Norwegian 

stocks spanning the period from October 1983 to February 1994. The logarithmic returns are 

scaled by one hundred to avoid any scaling problems during estimation.  Data are obtained 

from Oslo Stock Exchange Information A/S. The data includes the crash period of October 

                                              
5
 Engle and Kroner (1995); BEKK is named after an earlier working paper of Bollerslev, Engle, 

Kraft and Kroner). Moreover, a VEC or VECH formulation is also readily available. 
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1987. There is no reason to exclude these outliers since they reflect the nature of the market. 

The raw data series for individual assets are grouped into portfolios as described in section 

2.2. The dataset is therefore composed of event portfolios, non-event portfolios and one 

market index. The event and non-event portfolios are divided into seller (S), acquirer (A) and 

both seller and acquirer (B) portfolios. We define three different event period windows; (1) 

from 10 days before to 1 days after an announcement (PE{-10,+1}); (2) from 20 days before to 

5 days after the announcement (PE{-20,+5}); and finally (3) from 40 days before to 40 days 

after the announcement (PE{-40,+40}). The non-event portfolios are formed by a random 

selection of event firms consisting of selling (PSNE), acquiring (PANE) and both selling and 

acquiring firms (PBNE), respectively. All firms in the non-event portfolios exclude event 

periods of -40 to +40 days relative to announcements. In case of several announcements for 

an individual firm all periods –40 to +40 days relative to announcements are excluded. 

 

{Insert Table 1 about here} 

 

Therefore, this daily time series database gives us potentially 2611 observations for each 

portfolio and index. This number of observations provides enough degrees of freedom to 

permit use of asymptotic tests. However, the event portfolios will most likely consist of a 

varying number of assets over dates and especially the shortest event period window will  

consist of a number of missing observations. Hence, all the sample sizes will be reported. The 

characteristics of the raw data from event and non-event equally weighted asset portfolios and 

the value weighted market index, are reported in Table 1.  

 

The following immediate observations can be made. The mean returns are highest for the 

seller firm event portfolios in the two narrowest announcement period windows. The longest 

time period window for the selling companies show a considerably lower daily mean return. 

Moreover, compared to all other portfolios, the daily return standard deviations for selling firm 

portfolios are the highest for all three event period portfolios. For the shortest event period the 

mean return is 5 times and the standard deviation 3 times as high as the market index values. 

The same numbers for the acquiring portfolios are considerably smaller. That is, both 

expected return and standard deviation are highest for the event portfolios formed from selling 

firms. The non-event portfolios show results close to the market index. Hence, Table 1 

suggests event-induced price and return turbulence. Figure 1, panel A, plots the raw value 

weighted market index. From this time series it seems to exist several periods of high volatility 

followed by periods of lower volatility. However, any pattern is not readily observable from the 

plots. 

{Insert Figure 1 about here} 

 

Following Gallant, Rossi and Tauchen (1992) many authors have noted systematic calendar 

effects in both mean and volatility of price movements. Hence, we adjust all portfolio and index 
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time series by regressing the scaled returns on the set of adjustments variables:  = x’ + u 

(mean equation). The adjustment variables consist of dummy and time-trend variables. The 

least square residuals are taken from the mean equation to construct a volatility equation: 

ln(u
2
) = x’ + . Finally, a linear transformation is performed to calculate adjusted return series 

(): adj = a + b*(u/exp(x’/2)), where a and b are chosen so that the sample means and 

volatility of  and adj are identical. This adjustment procedure for all portfolios and the value-

weighted index allow us to focus on the day-to-day dynamic structure under an assumption of 

stationary series. We plot the adjusted value weighted index in Figure 1 Panel B. As for the 

index, all event and non-event portfolios show an adjusted time series that become more 

homogenous over time. Further discussion of the effects from the adjustment procedure is 

found in Gallant et al. (1992). Owing to space requirements we do not report details from the 

adjustment results
6
.  

 

To get an idea of the return distributions of the portfolio and index series, we have also 

reported the kurtosis and skew in Table 1. The numbers report leptokurtosis in all series. We 

find too much probability mass around the mean and too low probability mass around 1 and 2 

standard deviation from the mean. The numbers for the skew is strongly negative for the 

market index and strongly positive for the shortest event firm portfolios. Hence, the event 

portfolios show more positive extreme return values than negatives in contrast to the market 

index. The kurtosis and skew suggest that the returns are not normally distributed. Hence, to 

accomplish this deviation from normality we employ a student t-density distribution in the log-

likelihood function for the GARCH estimation. For the bivariate GARCH estimation (MGARCH) 

we assume a multi-normal distribution.  

 

Finally, the portfolios and the index all report significant ARCH test statistics. The test statistic 

suggest volatility clustering and make the (G)ARCH methodology employable for all our 

sample series. 

 

4  Empirical Results for Univariate Time Series 

 

4.1   The univariate and asymmetric ARMA-GARCH-in-Mean
7
 specification 

 

Maximum likelihood estimates of the parameters in equation (1), (2) are given in Table 2 for a 

student-t density log-likelihood function. The constant  in our model is expected to be 

positive showing a positive drift. All the ’s are insignificant, which suggest that all the series 

cannot report a non-zero drift. 

 

                                              
6 The results are readily available from the author upon request. 
7
 All series and the market index BIC prefers p=0 and q=m=n=1. 
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Non-synchronous trading or serial correlation is negative and statistical significant for the 

market index and all non-event portfolios except selling firms. This result suggests that the 

selling firms are thinly traded assets. The event series show all negatives or close to zero 

autocorrelation coefficients. However, for the shortest event period window, the series show 

insignificant coefficients. Hence, the market is reasonable information efficient in expectation 

of announcements (immediate adjustment). Our results therefore suggest that non-

synchronous trading may be important to control for in classical event studies. 

 

{Insert Table 2 about here} 

 

The parameter for residual risk and contemporaneous conditional volatility () is negative but 

insignificant for all portfolios. The result suggests an insignificant negative relationship 

between return and volatility, which suggest lower returns in high volatility regimes. The 

insignificance may also suggest higher relevance for systematic risk (market risk) as 

suggested by several asset-pricing models. The in-Mean formulation seems therefore to be 

redundant in these ARMA-GARCH models.  

 

Among the estimated conditional volatility ARCH/GARCH coefficients for the GARCH 

specification reported in Table 2, which are all strongly significant, we find clear patterns. 

Firstly, the constant coefficient m0 in the conditional volatility process in the GARCH model is 

small but significant for the index, non-event series and the longest event periods. The result 

suggests a significant coefficient for unexplained conditional volatility. For the two narrowest 

event windows we find a strong increase in the m0 coefficient, which suggests a strong 

increase in unexplained conditional volatility, which most likely is attributable to the events. 

The increase is especially strong for series consisting of selling firm. Secondly, the past 

squared errors have more influence over the conditional volatility of the two narrowest event 

portfolios than they do over the conditional volatility of the non-event portfolios and the index. 

The result suggests more sensitivity to past shocks for event portfolios relative to non-event 

portfolios. Thirdly, in contrast to the squared past error, the past conditional volatility exerts a 

greater influence over the current conditional volatility for non-event portfolios than event 

portfolios. Hence, the autocorrelation in the conditional volatility process is lower for event 

portfolios. For especially the event series most centred on the announcement day, we find low 

coefficients for the past conditional volatility. The parameter for asymmetric volatility is 

significant and negative for the index and all non-event portfolios. None of the event portfolios 

report significant asymmetric volatility. Our results therefore suggest that asymmetry may be 

redundant in event periods but is required in on-event periods. 

 

{Insert Table 3 about here} 
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Summary values for the conditional volatility process (hi,t) are reported in Table 3. Table 3 

clearly indicates event-induced volatility. Highest relative conditional volatility increase is found 

for selling firm series. Our results indicate a 3 to 4 times mean increase in the conditional 

volatility. Also the acquiring firm series report an increase in the conditional volatility, but 

clearly smaller than selling firms. Hence, results suggest a need to control for the increased 

volatility in the event periods, for especially selling firms.  

 

{Insert Table 4 about here} 

 

Finally, as a specification test of our ARMA-GARCH models, we calculate the sixth order 

Ljung-Box (1978) statistic for the standardised residuals and squared residuals of each of the 

portfolios and the market index’s expected returns in Table 4. In each portfolio there are no 

significant evidence of serial correlation (1%) in the residuals and squared residuals up to lag 

6. The kurtosis is strongly reduced and all portfolios show lower absolute skews for the 

standardised residuals. In comparison to the adjusted raw returns the K-S Z-test confirms the 

more normal distributed residuals. The two features, close to normal residuals and the highly 

significant student-t density parameter t seem to emphasis the importance of thick tails 

estimations. Our results therefore suggest that student-t densities in the log-likelihood function 

are preferred in classical event studies. The ARCH tests report no conditional 

heteroscedasticity in the standardised residuals. Hence, all conditional heteroscedasticity is 

captured by the GARCH specification of the conditional volatility. The BDS (Brock et al., 1991, 

1995) test statistic shows insignificant values at all dimensions (m) and  standard 

deviations. Hence, no data dependence and non-linearity is found in the standardised 

residuals. However, the joint bias tests (Engle and Ng, 1993) report some significant test 

statistics. Hence, we will find some bias in the conditional volatility prediction. However, overall 

our specification test results indicate that the current univariate and asymmetric ARMA-

GARCH models are appropriate models for stock returns in event studies. Moreover, 

analytical, intuitive and linear reasoning may be conducted as we find insignificant test 

statistics for data dependence in all series. 

 

5 The Bivariate and Asymmetric ARMA (p,q)-GARCH (m,n)-in-Mean
8
 specification 

 

Maximum likelihood estimates of the parameters for the bivariate GARCH-in-Mean model are 

presented in Table 8A and 8B for all portfolios. The bivariate estimation controls for market 

dynamics by incorporating a value-weighted market index into the estimation. The two 

intercepts (0 and M) in the mean equations from our bivariate system in Table 5A are 

positive indicating a positive drift.  

 

                                              
8
 All portfolios and the market index BIC prefer q=m=n=1. 
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Autocorrelation is present in all bivariate estimations except for selling firms. The market index 

shows negative and significant autocorrelation coefficients for all estimations. The event series 

show all significant negative coefficients except for the two selling firm series most centered 

on the announcement day. Our results therefore suggest that coefficients for non-synchronous 

trading are needed in almost all the bivariate event estimations. Cross-autocorrelation from 

index to event series is significant for all series. 

 

The GARCH-in-Mean parameters can be reported for several alternative outlines of the mean 

equation. However, we estimate and report only the diagonal volatility matrix in the mean 

equation (only variances). The event series volatility may be interpreted as residual risk and 

can be considered as a proxy for omitted risk factors (Lehmann, 1990). None of the portfolios 

and the market index report significant “in-Mean” coefficients. Hence, the “in-Mean” 

specification seems therefore redundant. 

 

{Insert Table 5A and 5B about here} 

 

From Table 5B the t-statistics indicate that all the conditional volatility parameters are almost 

all statistical significant. This result cast doubt on the validity of the univariate model 

specification. The constant coefficients in the conditional volatility equations report the same 

effects as for univariate estimations. The constant term m11 show considerable increases in 

especially the selling firm event portfolios compared to the non-event firm portfolios. This 

result implies that there is an increase in conditional volatility that is not possible to explain by 

the ARCH/GARCH coefficients alone (unexplained increase). The increase is also found for 

the constant term m22. However, the increase is considerably smaller than for m11. Moreover, 

the increase is higher the narrower the event period and therefore shows the highest non-

explainable conditional volatility. For the past squared errors we find that the event series most 

centred on the announcement day are considerably more sensitive to past shocks than the 

non-event portfolios. In contrast the past conditional volatility exerts a greater influence over 

the current conditional volatility in the case of the non-event series. Moreover, as for the 

univariate estimations, the past conditional volatility coefficients show a decrease the shorter 

the event period for selling and acquiring firm series. We report values for the conditional 

volatility process (hi,t) in Table 6. The results for the hi,t processes are very similar to that 

obtained in the univariate estimations. Moreover, hi,t produces mainly the same time series 

plots. Table 6, as Table 4 for the univariate case, clearly indicates event-induced volatility. 

Highest relative conditional volatility is found for the selling firm series. Hence, also our 

bivariate results indicate a 3 to 4 times mean increase in the conditional volatility for selling 

firms. Moreover, we find that the acquiring firm portfolios show an increase in the conditional 

volatility, but clearly smaller than selling firms. Therefore, as for the univariate case, our 

bivariate results suggest a need to control for volatility clustering in event studies.  
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{Insert Table 6 about here} 

 

As for univariate models, specification tests of the bivariate model are performed. We find no 

significant serial correlation in the residuals and squared residuals up to lag 6. Furthermore, 

the bivariate cross-correlation series for -10 and 10 lags are calculated and checked (not 

reported). The result suggests very low to no significant cross-correlation in any lag for all 

bivariate ARMA-GARCH-in-Mean estimations. All portfolios and the market index show 

excess kurtosis for the standardised residuals. Almost all portfolio residuals show negative 

skews, except for the narrowest event portfolios. Moreover, the bivariate estimations, report 

lower kurtosis and skews than the univariate estimations. However, the K-S Z-test still reports 

non-normal standardised residuals for almost all portfolios and the index. The ARCH test 

statistic reports no volatility clustering in the standardised residuals. The BDS test statistic for 

i.i.d. reports that none of the portfolios show significant non-linear dependence at any 

dimension. Finally, the joint bias test reports no prediction bias for the conditional volatility. 

Hence, our bivariate model survives the specification tests and is at the same time a 

parsimonious model, which is able to capture dynamic structure.  

 

{Insert Table 7 about here} 

 

Since the market seems to play an important role, an univariate representation of the 

conditional volatility of stock returns will be disputed. Moreover, the specification tests 

unambiguously prefer a bivariate estimation technique.  

 

6   The changes in conditional volatility 

 

To test for the changing volatility hypothesis from non-event to event firm samples, we perform 

a Likelihood Ratio Test (LRT). This test is a general test for testing the restrictions imposed on 

a model. The model is first estimated without any restrictions. The model is then re-estimated 

with the restrictions in place. Under the null hypothesis, LRT is distributed as 
2
 with number of 

restrictions as degrees of freedom. For our analysis we restrict the event samples GARCH 

parameters to be within the intervals obtained from non-event samples GARCH parameters. 

As we employ a GARCH (1,1) lag specification we introduce 6 restrictions on the event 

sample GARCH estimations. We report the LRT values with corresponding test statistics in 

Table X. 

 

{Insert Table 8 about here} 

 

Table 1 report a significant change in parameter values for both univariate and bivariate 

estimations from non-event to event samples. The LRT test statistics rejects unchanged 

parameter values for all event series. Hence, our results suggest a significant increase in 
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conditional volatility. The increase suggests a need for new event methodologies controlling 

for this increase as well as the significant non-synchronous trading effects in all our samples.  

 

Therefore in Section 7, we suggest two alternative events study techniques, a univariate and a 

bivariate specification that models non-synchronous trading and volatility clustering. Note that 

we in the univariate specification do not control for non-synchronous trading and volatility 

clustering in the market index.  

 

7    ARMA-GARCH Specifications for event study methodology 

 

Our results suggest that we find different mean and volatility effects during event and non-

event periods. Our findings therefore suggest a need for more advanced techniques for 

calculation of abnormal returns in classical event studies. In this paper we have shown that 

both univariate and bivariate GARCH-in-Mean models indicate higher conditional volatility for 

event portfolios relative to non-event portfolios. Hence, our results suggest event study models 

that put emphasis on non-synchronous trading and volatility clustering. ARMA mean equations 

emphasis non-synchronous trading and GARCH volatility equations emphasis volatility 

clustering.  

 

Hence, our results suggest either a univariate or a bivariate ARMA-GARCH specification for 

estimation of abnormal return during event periods. Below we define these models for use in 

classical event studies employing the market model.  

 

The first model is the univariate ARMA(p,q)-GARCH(m,n)-in-Mean model for individual assets. 

Based on our results from Section 4, this model becomes  


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where j = 1, ...,N event firms, RM,t is the appropriate raw exogenous market index, Dj,i,t is a 

dummy variable with value 0 outside the event period and 1 inside the event period. The 

definition of Dj,i,t decides the length of the event period. E(i,t | t-1)  D(0,hi,t,i) is the student t-

density distribution with  degrees of freedom. Finally we define the hi,t employing the 

asymmetric GARCH(m,n) formulation for the conditional volatility process 
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where j,t is the return for firm j day t; j,t is leverage effects (asymmetry), mj,0 > 0, aj,1,bj,1  0,  

aj,1 + bj,1 < 1, and t-1 is the set of all available information at time t-1. The model captures 

non-synchronous trading and volatility clustering for every asset j. However, the RM,t is the 

adjusted raw market returns. 
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The second proposed model is the bivariate ARMA(p,q)-GARCH(m,n)-in-Mean model. This 

model becomes
9
: 
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where t |t-1   N (0,Ht).  is 2 x 1 vector of constants, ms,0, As, Bs are 2 x 2 parameter 

matrices, and the elements of Hs,t are hj,t = vart (rj,t), hj,M,t = covt (rj,t, rM,t), and hM,t = vart (rM,t). 

To allow for the leverage effect and asymmetric volatility we apply the GJR methodology  

(j,1,  M,1) (Glosten et al., 1993) modeled as for univariate specifications. Note, that only the 

asset series will employ an event period dummy (Dj,k,t) for the bivariate estimation. 

 

Among the two model specifications above for the market model in event studies we prefer 

the bivariate GARCH specification. The main reason for this choice is that we are able to 

control for non-synchronous trading (autocorrelation and cross-autocorrelation) in the 

conditional mean and volatility clustering and asymmetric volatility in the conditional volatility 

for both the asset series and the market index series. As we have shown above and in 

Solibakke (2000a, 2000b) these effects are important to control in especially thinly traded 

markets. Moreover, the index and asset series need to be flexibly modelled to allow for market 

dynamics. The bivariate model controls the co-moments of asset and index series. Hence, 

unadjusted statistics for the significance of abnormal return may appropriately be applied. 

 

7   Summaries 

 

This paper has estimated an univariate and a bivariate ARMA-GARCH-in-Mean specification 

for the conditional mean and volatility equations for event and non-event series in the 

Norwegian thinly traded equity market. The univariate model assumes a student-t density log 

likelihood function. Both models report strongly higher conditional volatility in event periods. 

Specification tests suggest that both models capture both non-synchronous trading and 

volatility clustering in return series. Moreover, specification tests suggest that both univariate 

and bivariate specifications reject data dependence but some bias in conditional volatility 

predictions exists.  Formally we test for changing volatility in event periods applying a 

likelihood ratio test statistic for parameter restrictions obtained from non-event periods. All 

LRT test rejects unchanged parameter estimates. 
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Finally, the observed coefficient significances of the conditional mean and volatility equations, 

the strong increase in volatility for observed event series, suggest that event studies should be 

conducted within bivariate ARMA-GARCH lag specifications. Moreover, owing to removed 

biases in the moments and co-moments, abnormal returns calculations can apply unadjusted 

test statistics. 
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