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Abstract 

 

ARMA-GARCH lag specification is employed to fit a model exhibiting non-synchronous trading 

and volatility clustering for the Norwegian thinly traded equity market. In particular, we 

investigate characteristics of the conditional mean and conditional volatility inhibited in thinly 

traded equity markets. We employ trading volume as a proxy measure for trading frequency. 

Low to no trading volume induces thin trading and non-trading effects while a relative high 

trading frequency induces continuous trading. Our main objective is to investigate trading 

frequency differences in autocorrelation and cross-autocorrelation in the mean and volatility 

clustering as well as any symptoms of data dependencies in the model residuals, which imply 

ARMA-GARCH model misspecification. We employ BIC efficient ARMA-GARCH lag 

specifications for the conditional mean and volatility and introduce relevant mean and volatility 

parameter measures that are well known from the changing volatility literature. Our results 

report consistent mean and volatility patterns over increasing trading frequency series. Non-

synchronous trading and non-trading effects show a consistent pattern in autocorrelation and 

cross-autocorrelation for the conditional mean and volatility clustering exhibits a consistent 

pattern in past shocks, past conditional volatility, persistence and weight to long-run average 

volatility. In contrast to the more relatively frequently traded asset series the most thinly traded 

series report low and insignificant asymmetric volatility. However, specification tests suggest 

data dependence for the most thinly traded series, which seems to be prolonged into the 

equal-weighted index. Hence, due to serial correlation and data dependence in model 

residuals the ARMA-GARCH lag specifications are only appropriate for relatively frequently 

traded series.  
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1    Introduction 

 

ARMA-GARCH lag specification for the conditional mean and volatility is employed for a non-

synchronous trading and changing volatility model characterising the thinly traded Norwegian 

equity market. Solibakke (2000a) applies autocorrelation results from Campbell et al. (1997) 

and show that the Norwegian equity market is a relative thin market compared to more 

elaborate markets. Solibakke (2000a) also show that the Norwegian market exhibit thinly 

traded series relative to continuously traded series
1
. Hence, the main motivation is to 

investigate any differences in the conditional mean and volatility from thinly to continuously 

traded series. We apply trading volume as a proxy measure for trading frequency. We employ 

observed return series and non-trading and therefore zero returns, is characterized by zero 

trading volume in Norwegian Kroner (NOK). As the Norwegian market exhibits long return 

series with zero trading volume, trading volume proxies well for non-synchronous trading and 

non-trading effects induced by the zero return series. To establish trading frequency series we 

form four portfolios based on trading volume in NOK. These four series and an equal- and a 

value-weighted market index series become the main empirical investigation focus. We 

investigate the dynamics in return series that exhibit an increasing trading frequency, 

employing ARMA-GARCH methodology to model the conditional mean and volatility 

processes. ARMA-GARCH estimations from thinly to continuously traded series may give new 

and interesting information of non-synchronous trading and non-trading effects as well as 

volatility clustering. The investigation are especially interested in effects from autocorrelation 

and cross-autocorrelation in the conditional mean and shocks, autocorrelation, persistence 

and asymmetry in the conditional volatility. Hence, this investigation studies the relationships 

between trading frequency and conditional mean and volatility dynamics in an estimation 

context that control for non-synchronous trading and conditional heteroscedasticity. Finally, to 

complete the model features, we incorporate asymmetric volatility as well as a measure of 

residual risk from the conditional volatility to the mean (in-Mean). To my knowledge the focus 

of trading frequency and BIC preferred lead and lag structures for the conditional mean and 

volatility specifications are new and are not previously been carried out in international studies. 

 

The portfolio series are organized based on historic trading volume and are rebalanced 

monthly, where the thinnest traded portfolio captures very thin trading, the intermediate thinly 

traded portfolio captures dynamics for thinly traded series and the two frequently traded 

portfolios capture medium to frequent (continuous) trading. All time series are adjusted for 

systematic scale and location effects and a correct lag structure for the conditional mean and 

volatility are achieved by a BIC (Schwarz, 1978) preferred ARMA-GARCH-in-Mean lag 

specification. Note that the univariate ARMA-GARCH-in-Mean specification represents a 

                                              
1
 See chapter 1.1 of my dissertation (Solibakke, 2000a) for a definition and classification of 

thin trading in the Norwegian equity market. 
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departure from Brownian Motions (Bachelier, 1964) and random walk. The specification 

explicitly allows for predictability measures in both mean and volatility processes. 

 

We believe that the contribution of this paper is a higher understanding of the workings of 

mean and volatility processes in thinly traded markets, where non-synchronous trading and 

non-trading effects as well as volatility clustering may contribute significantly to the dynamics 

of asset pricing. The specification contributes by the following model features across varying 

trading frequency. Firstly, the specification seeks consistent coefficient differences in the 

conditional mean equation; that is, autocorrelation and cross-autocorrelation. Secondly, 

consistent and significant coefficient differences in the volatility equations may contribute to a 

higher understanding of lagged shocks effects, auto-correlated and asymmetric volatility and 

the weight to long-run average volatility. Thirdly, as the degree of leptokurtosis in residuals 

measures the departure from the normal distribution, any systematic and significant coefficient 

differences may contribute to a higher understanding of non-normal returns. Fourthly, as we 

employ the Bayes information criterion (Schwarz, 1978) (BIC) for lag specification in both the 

mean and the volatility equations, efficient ARMA-GARCH specification is obtained in both 

mean and volatility. Any change in lag structures may offer new and higher understanding of 

mean and volatility dynamics for thinly traded markets.  Fifthly, as we perform elaborate 

specification test statistics and single and joint tests for volatility prediction biases, any 

misspecifications will be reported. 

 

We follow an expansion path starting from adjusted raw returns and eventually specify both 

ARMA (mean) and GARCH (volatility) specifications for all the employed data series. As these 

Norwegian equity series contain assets that show thin trading relative to continuous trading, 

this investigation may contribute substantially to the international non-synchronous trading
2
 

and changing volatility literature. Consequently, the ARMA-GARCH specifications for the 

Norwegian equity market may characterise non-synchronous trading and non-trading effects 

as well as volatility clustering across varying trading frequency series not earlier shown in 

international finance. 

 

The remainder for this paper is therefore organised as follows. Section 2 gives a literature 

overview of changing volatility, non-synchronous trading and volatility clustering. Section 3 

defines the data and describes a general adjustment procedure for systematic location and 

scale effects in time series. Section 4 specifies the ARMA lag specification for the conditional 

mean and the GARCH lag specification for the conditional volatility, employing the BIC 

(Schwarz, 1978) methodology to ensure efficiency. Section 5 reports the empirical results and 

Section 6 reports the findings from the analysis. Finally, section 7 summarises and concludes 

our findings.  

                                              
2
 See Solibakke (2000a) for non-trading characteristics for individual assets in the Norwegian 

equity market. 
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2    Literature overview 

 

If a subordinated stochastic volatility model determines asset returns, then returns during 

periods of non-synchronous trading and non-trading would differ from returns during periods of 

synchronous and continuous trading. Assuming trading frequency is a proxy for (non)-

synchronous trading effects, we may hypothesise that trading periods containing low or no 

trading volume is characterised by mean and volatility processes different from processes in 

trading periods containing high trading frequency. Clark (1973) develops a subordinated 

stochastic process model for speculative price series. He argues that observed daily price 

changes are driven by two components; (1) a subordinated (or conditional) price change 

process and (2) a driving (or operational time) process. Clark found that the variability of the 

observed price process differs from one chronological time period to another, depending on 

the volume of transactions. Hence, a mix of finite volatility processes may describe price 

change series. Tauchen and Pitts (1983) have later refined this research assuming a 

stochastic volatility process. Moreover, Gallant and Tauchen (1996) employ efficient method 

of moments to estimate stochastic volatility models with diagnostics. They find that stochastic 

volatility models describe market characteristics well allowing for autocorrelation in both the 

mean and volatility processes. 

 

Other research supports the mixture of distribution's hypothesis by testing subordinated 

stochastic process models of price change series and trading volume series.
3
 
4
 Harris (1989) 

argues that observed properties of daily data are a consequence of similar properties of 

transaction data. Because each transaction price change is leptokurtic, leptokurtosis is a result 

of daily price changes when transaction data are aggregated to obtain daily data. Using a 

mixture of distribution model for daily data that is conditioned on the arrival of information in a 

given day, Harris finds kurtosis, skews and heteroscedasticity in daily price changes. His 

results also suggest that the daily transactions count may be a useful instrumental variable of 

estimating unobserved realisations of stochastic price variances. However, the system is still 

incomplete, as the dynamic properties of the information arrival process, which is assumed to 

drive return, volatility and volume, remain unspecified. Hence, in recent years we find that 

many analytical models of information arrival find that returns and trading-volume are co-

determined. For example, Admati and Pfleiderer (1988) model the effects of private 

information on order flow and that the trades of several classes of investors (informed traders 

and discretionary liquidity traders) will tend to cluster. This clustering of trades causes return 

variance to be highest during periods of active trading. In an alternative approach to the 

relation of information arrival, volume, return and variances, Ross (1989) assumes that 

                                              
3
 Epps and Epps (1976), Morgan (1976), Westerfield (1976), and Tauchen and Pitts (1983). 

4
 Theoretically, these processes can be derived as discrete time approximations to the 

solution of the option valuation problem when the volatility of the underlying asset price is 
stochastic. Research in this vein has been carried out by, for example, Scott (1987), Wiggins 
(1987), Chesney and Scott (1989) and Melino and Turnbull (1990). 
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information arrives according to a martingale process and, though no arbitrage conditions, 

demonstrates that return variances are proportional to the rate of information flow. In this 

case, price change when there is new information is coincident with trades.  

 

Return volatility and trading volume will be related if transaction arrivals are related to the flow 

of information in the model. Hence, a growing body of empirical evidence supports the joint 

determination of return variance and trading volume.
5
 However, while international research 

focuses on short-term conditional heteroscedasticity in bivariate asset trading frequency and 

return estimation (see for example SNP
6
 estimation in Gallant, Rossi and Tauchen, 1992), we 

focus here on systematic and consistent differences in lag structures and coefficient changes 

in conditional mean and volatility equations for thinly and frequently traded assets employing 

univariate ARMA-GARCH-in-Mean lag specifications. Hence, in contrast to Lamoureux and 

Lastrapes (1990), trading volume series are not directly modelled in the conditional volatility 

process. In our univariate investigation we aim to find consistent lag and coefficient 

differences in the conditional mean and volatility processes for series showing an increasing 

trading frequency. 

 

The model specifications focus on changes in lag structures as well as changes in coefficients 

in the conditional mean and volatility across varying trading frequency series for the 

Norwegian market. Our focus will be on differences in non-synchronous trading and non-

trading effects as well as conditional heteroscedasticity and volatility clustering. Intuitive 

thinking suggest that an asset that reports non-trading responds to new information with a 

time lag. These lagged responses may induce biases in the moments and co-moments of 

daily return series. The serial correlation may influence tests of predictability and non-linearity 

as well as volatility risk and expected returns.  The first to recognize the importance of non-

synchronous trading was Fisher (1966). Campbell et al. (1997) reviews and extends existing 

theory. They show that large stocks tend to lead those of smaller stocks, which suggest that 

non-synchronous trading may be a source of correlation. However, they also find that the 

magnitudes for the autocorrelations imply an implausible level of non-trading and therefore 

leads them to the conclusion that non-trading is only responsible for some of the 

autocorrelation. Moreover, applying estimated non-trading probabilities from daily 

autocorrelations (Campbell et al. 1997) they find little support for non-synchronous trading and 

non-trading effects as an important source of serial correlation in the returns for common 

stock over daily and longer frequencies
7
.  

 

                                              
5
 See Barclay, Litzenberger and Warner (1990), Gallant, Rossi and Tauchen (1992) and 

Andersen, 1994. 
6
 A Semi-Non-Parametric Score Generator (Gallant and Tauchen, 1989) 

7
 See also Boudoukh, Richardson and Whitelaw (1995), Mech (1993) and Sias and Starks 

(1994). All three papers conclude that non-trading cannot completely account for the observed 
autocorrelations. 
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3   Empirical data and Methodologies 

 

3. 1  Empirical Data 

 

The study employ daily returns and trading volume for individual Norwegian stocks spanning 

the period from October 1983 to February 1994. Daily return series are defined as ln(pi,t/pi,t-1), 

where pi,t is the daily closing price for asset i  at time t. Trading volume is defined as the total 

transaction volume in NOK at day t for asset i including external trading (trading outside the 

organised market). The individual shares are grouped into portfolios at period t based on 

trading volume series in the information set at t-1, t-1. We rebalance the portfolios each 

month and to avoid a too frequent shift of component stocks among the asset portfolios we 

employ the average daily trading volume for the last two years. Two years of daily volume is 

chosen to obtain a time overlap of 95% for each portfolio restructuring
8
. Hence, assets are 

arranged into portfolios based on changes in trading volume over a considerable time period. 

We emerge from this exercise with four series; a thinly traded series that contains the most 

thinly traded assets (Portfolio 1), an intermediate thinly traded series (Portfolio 2), an 

intermediate frequently traded series (Portfolio 3), and finally a frequently traded series that 

contains the most frequently traded assets (Portfolio 4). In this exercise we have employed all 

assets in the Norwegian thinly traded market and on average all series therefore contain at 

least 25 assets. Moreover, we divide the time periods into two sub-samples; (1) a time period 

before the crash in October 1987 (1019 daily observations), (2) a time period after the crash 

(1546 daily observations), and (3) a time period for the entire 10 years time period 1983-1994 

(2611 daily observations)
9
. Note that to keep the paper within reasonable limits we only report 

results for the entire period. Relevant sub-period results are described in footnotes. Note also 

that the crash is included for the entire period 1983-94, which induce that market dumps are 

considered normal in equity market. Moreover, we include two market wide indices consisting 

of all the stocks in the Norwegian market with (1) equally weighted stocks and (2) market 

value weighted stocks. We include these indices to aim to recognise patterns from trading 

volume portfolios on the index level. Therefore, this high frequency time series database gives 

us potentially 2611 observations for each portfolio and index and is our main vehicle to 

achieve our objectives for the investigation of thinly traded markets.  

 

For all time series we employ the procedures described by Gallant, Rossi and Tauchen (1992) 

to adjust for systematic location and scale effects in all six return series
10

. The procedure 

gives us series that become more homogenous allowing us to focus on the day-to-day 

                                              
8
 Moreover, the first trading volume observation we have been able to collect for all assets in 

the Norwegian equity market is registered 01.09.81. 
9
 The crash period in this study is defined as the two months October and November in 1987. 

The estimations and specifications results for the two sub-periods are not reported based on 
space considerations. However, all results are available from the author upon request. 
10

 The scale and location results for all six series are not reported but are available from the 
author upon request. 
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dynamic structure under an assumption of stationary series without any disturbance to mean 

and volatility characteristics. To show these properties from the procedures we report the 

value-weighted index and the natural logarithm of the total trading volume in Figure 1 and 2, 

respectively. The index shows an approximate yearly growth of 12%. In particular, note the 

strong and erratic trend in trading volume for the Norwegian Market. On average, the growth in 

the trading volume in NOK is approximately 32,9% per year.  

 

{INSERT FIGURE 1 OG 2 ABOUT HERE} 

 

{INSERT TABLE 1 ABOUT HERE} 

 

The characteristics of the adjusted portfolio and market index series are reported in Table 1. 

Table 1 shows that the mean returns are highest for the thinnest traded series and are 

accompanied by the highest standard deviation. Hence, both expected return and total risk are 

at its peak in these series. The most frequently traded series show lower return and standard 

deviation relative to the most thinly traded series. The two intermediately traded series show 

characteristics between the thinnest and the continuously traded series. The most frequently 

traded series show lowest minimum and highest maximum daily return, which also induce high 

absolute skew
11

 (negative tails) and high kurtosis
12

. The ARCH test statistic is a test of 

changing volatility in the return series. All series report highly significant changing volatility and 

suggests a need for ARCH/GARCH specification of the second moments. The RESET 

(Ramsey,1969) test statistic suggests non-linearity in the mean for all series. The BDS (Brock 

et al. (1988, 1991), Deckert (1991) and Scheinkman (1990)) test statistic suggests general 

non-linearity for all series at all dimensions (m) and for  equal to one
13

. Finally, the K-S Z-test 

suggests deviation form normally distributed adjusted returns for all series. The thinnest 

traded series show lowest deviation while the most frequently traded series show highest non-

normal returns. The skew and kurtosis numbers confirms all these K-S Z-test results.  

 

The market index series show as expected from portfolio literature, lower standard deviation. 

The numbers for the mean, maximum and minimum returns show no extraordinary pattern 

relative to the other portfolio series. As for the other series, the indices report changing 

volatility (ARCH), non-linearity in the mean (RESET) and general non-linear dependence 

(BDS)
14

. The numbers for skew and kurtosis suggest considerable deviation from normality 

                                              
11

 Skew: A measure of the thickness of the tails of a distribution 
12

 Kurtosis: A measure of the asymmetry of a distribution. 
13 Calculated as ( 

.
 standard deviation).  equal to 0.5, 1.5 or 2 does not materially change 

our conclusions. 
14 Sub-periods report (1) a reduced mean return and (2) an increased volatility story after the 
crash in October 1987. The average reduction in mean return for the four trading volume 
portfolios and the two market indices is approximately 107% and 82.8%, respectively, and the 
average increases in volatility is 54.8% and 38.6%, respectively. The thinnest traded assets 
have the highest increase in volatility. Moreover, the last sub-period (1987-94) produces 
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and are higher in absolute values than for the other trading frequency series. In fact, from the 

kurtosis and skew numbers the strongest deviation from normally distributed returns is found 

for the two index series, which is confirmed by the K-S Z-test statistic.  

 

3.2   The ARMA-GARCH-in-Mean methodology 

 

Table 1 reports autocorrelation, changing volatility, non-linearity and systematic leptokurtosis 

in the return distributions for all series. Hence, Table 1 suggests non-normal returns, ARMA 

effects in mean, ARCH/GARCH effects in volatility and a need to control for serial correlation 

and data dependence in model residuals (misspecification). Table 2 reports mean, standard 

deviation and autocorrelation for daily returns and squared returns in order to accomplish 

model specification. The ARMA-GARCH lag specification is strongly enhanced as the 

autocorrelation for returns and squared returns show clear patterns. In fact, the autocorrelation 

structure report the necessary underlying material for the conditional mean and volatility 

specification in the ARMA-GARCH methodology found in ENGLE (1982), Bollerslev (1986, 

1987) and Engle and Bollerslev (1986). Moreover, Table 2 reports the mean and standard 

deviation for all series, which enhance the setting of starting values for serial correlation 

estimation in both mean and volatility. The ARMA lag specification models non-synchronous 

trading and non-trading effects while the GARCH lag specification models conditional 

heteroscedasticity and volatility clustering. International literature applying ARMA-GARCH 

specifications have shown that these models are able to account for many of the lag 

structures found in observed mean and volatility processes. 

 

To obtain the most efficient ARMA-GARCH lag specification for the conditional mean and 

volatility, we perform a specification procedure that accommodates the characteristics of the 

return series. We approach the model’s lag specifications for the conditional mean and 

volatility for our return series below. Applying elaborate specification test statistics to the 

resulting lag structure residuals will determine whether the ARMA-GARCH model is able to 

accommodate the observed market characteristics. 

 

3.2.1 The conditional mean specification 

 

For the conditional mean specification, Table 2 reports the autocorrelation structure up to lag 6 

for the adjusted daily return series. We find negative serial correlation at lag one for the thinly 

traded series. In contrast, the frequently traded series report significant positive serial 

correlation. The general picture is therefore negative serial correlation for thinly traded series 

and positive serial correlation for frequently traded series. The correlation structure suggests 

that thinly traded series show mean reversion and therefore negative time dependence 

                                                                                                                                  
higher positive kurtosis, higher negative skew and the non-linear dependence seem to 
increase. 
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(Poterba and Summers, 1988 and Fama & French, 1988). However, thin trading imply series 

of zero returns and may therefore induce biases to the moments of the return series, which 

may produce spurious autocorrelation. Table 2 reports that the magnitudes of the serial 

correlation coefficients decay very fast at higher orders. By applying the above reported 

correlation structure and applying a procedure described by Box and Jenkins (1976) we may 

establish a parsimonious representation of the conditional mean structure. As we want to 

establish the model specification of an ARMA (p,q) process we employ the Schwarz criterion 

(BIC) to determine p and q. The BIC criterion (Schwarz, 1978) is computed as 

TTqpqpBIC ln)(ln),( 12   , where 
2
 is the estimated error variance and T is the 

number of time periods employed. We prefer small values of the criterion. The criterion reward 

good fits as represented by small 
2ln  and uses the term TTqp ln)( 1  

 to penalise 

good fits that is got by means of excessively rich parameterisations. The criterion is 

conservative in that it selects sparser parameterisations than the Akaike information criterion 

(Akaike, 1969) (AIC), which uses the penalty term 
1)(2  Tqp  instead of 

TTqp ln)( 1  
. Schwarz is also conservative in the sense that it is at the high end of the 

permissible range of penalty terms in certain model selection settings (Potscher, 1989). 

Between these two extremes is the Hannan and Quinn (Hannan, 1987) criterion. The usual 

suggestion is to use the Schwarz BIC criterion to move along an upward expansion path until 

an adequate model is determined. Hence, we employ the procedure 

.,),,(min),( 11 QqPpqpBICqpBIC   

 

{INSERT TABLE 2 ABOUT HERE} 

 

Table 3 reports the computed BIC, AIC and HQ criteria for three ARMA model specifications 

for all series. Table 3 shows that the three most frequently traded series and the value-

weighted market index all prefer an ARMA (0,1) lag specification for the conditional mean. 

Hence, these four series prefer an autocorrelation specification that employs a one period 

lagged moving average specification (MA (1)). The thinnest traded portfolio BIC prefers an 

ARMA (0,2) lag specification for the conditional mean. This lag specification suggests severe 

non-trading effects modelled by a two periods lagged moving average specification (MA(2)). 

Finally, the equal-weighted index prefers an ARMA (1,0) lag specification for the conditional 

mean. This specification suggests that combined series from thinly and continuously traded 

series seem to prefer an autoregressive specification (AR(1)). Moreover, interestingly, thin 

trading and non-trading effects seem to affect the mean specification differently in combined 

series containing similar assets versus all equity equal-weighted index series. Our preferred 

conditional mean specification for all series therefore becomes  

 

R Ri t i i i t i t i i t i i t, , , , , , , ,               1 1 1 1 2 2  for i =1, 2, 3, 4, EM, VM. (1) 
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where Ri is return for portfolio series i, the i coefficient is equal to zero for all i except i = EM, 

the i,1 is equal to zero for i=EM and the i,2 is equal to zero for i=2,3,4,EM and VM.  We are 

now able to estimate the mean structure employing standard ARMA (p,q) methodology, where 

p and q are BIC preferred. 

 

{INSERT TABLE 3 ABOUT HERE} 

 

The estimated coefficients of the ARMA (p,q) models of the conditional mean are reported in 

Table 4. The auto-regressive coefficient, i,1 and the moving average coefficients i,1 and i,2 

captures the first and second order serial correlation for all the return series. Table 4 reports 

strong autocorrelation for the conditional mean in the Norwegian equity market and suggest 

considerable predictability in return series.  

 

{INSERT TABLE 4 ABOUT HERE} 

 

The reported autocorrelation and distribution characteristics for the residuals () reported in 

Table 5, suggest that the ARMA (p,q) specification appropriately specify the conditional mean. 

Only the most frequently traded series may suggest model misspecification by the Qi(6) 

statistic (Box and Jenkins, 1976). None of the other series shows significant autocorrelation 

for the residuals up to lag 6. Hence, the BIC preferred ARMA (p,q) models seem to provide a 

well-specified form for the conditional mean process in the Norwegian market. Moreover, the 

numbers for skew and kurtosis are reduced relative to the same numbers for adjusted raw 

data series. However, the ARCH (6) test statistics rejects strongly conditional 

homoscedasticity, the RESET test statistic rejects linearity in the mean and the BDS test 

statistic rejects identically and independently (iid) distributed residuals. In fact, the ARCH, the 

RESET and the BDS test statistics are mostly maintained from the adjusted raw series at all 

dimensions. Hence, the data dependence reported in Table 1 and 5, may originate from the 

conditional volatility process. We model the conditional volatility lag structure below. 

 

{INSERT TABLE 5 ABOUT HERE} 

 

3.2.2 The conditional volatility specification 

 

Table 5 above reports the serial-correlation structure in the residuals and squared residuals 

from the ARMA (p,q) lag specification of return series, where p and q are BIC (Schwarz, 1978) 

preferred. The standardised residuals in Table 5 show close to zero autocorrelation and 

suggest an appropriate conditional mean specification. However, Table 5 finds strong 

evidence of autocorrelation among the squared residuals (
2
). This empirical finding lends 

strong support to an ARCH/GARCH specification for the conditional volatility process. To 
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achieve a lag specification for the conditional volatility process we employ the applied test for 

ARCH effects described in Table 1. Engle (1982) shows that a test of the null hypothesis that 

i,t has a constant conditional variance against the alternative that the ARMA theory follows 

through. This implies that by employing the squared residual i,t
2
 we can identify u and n in an 

ARMA (u,n) specifcation for the conditional variance by applying the same methodology as 

conditional mean ARMA (p,q) modelling in the previous section. Hence, Table 6 reports the 

BIC, HQ and AIC for ARMA (u,n) models of the squared residuals from BIC preferred ARMA 

(u,n) models of the conditional mean process for all series. For all series the autocorrelation 

lag structure in the squared ARMA (u,n) residuals is consistent with an ARMA (1,1) model. 

Hence, we will use the conditional variance equation  

1,1,

2

1,1,0,,   tiitiiiti hbamh  ,  for i =1, 2, 3, 4, EM, VM   (2) 

which is known as the GARCH (1,1) specification
15

 for the conditional volatility
16

. In this model, 

the coefficient ai,1 measures the tendency of the conditional variance to cluster, the bi,1 

measures the autocorrelation in conditional volatility, while the coefficients ai,1 and bi,1 together 

measures the degree of persistence in the conditional variance process. For a stable GARCH 

(1,1) process we require that .11,1,  ii ba  Otherwise, the wight applied to the long-term 

variance is negative. The weight is )(1 1,1,0, iii ba   and the long-term variance is 

0,0, / iii mV  . 

{INSERT TABLE 6 ABOUT HERE} 

 

3.2.3   In-Mean, Cross Portfolio Effects and Asymmetric Volatility 

 

We include tih ,  in the mean equation in an attempt to incorporate a measure of risk into the 

return generating process. We therefore induce a measure of residual risk (Lehmann, 1990) 

into the model. We also include i,j (ij) in the conditional mean to control for any cross series 

effects of the type identified by Lo and MacKinlay (1990). Finally, we include a coefficient for 

asymmetric volatility in the conditional variance equation (Nelson, 1991, Glosten et al., 1993). 

We apply the methodology of Glosten et al. (1993) to model asymmetric volatility
17

 in the 

conditional variance equation (i). Finally, we assume an innovation t that follows a 

conditional student-t distribution
18

 to accommodate leptokurtosis, which we observe in Table 1 

and 4 for all the series’ return distributions.  

 

                                              
15

 For applications see Bollerslev, Chou and Kroner (1992). 
16

 The GARCH(1,1) specification was introduced by Bollerslev (1986, 1987) and seems to be 
the major specification for GARCH(m,n) models in international finance. 
17

 For reference purposes we will denote this asymmetric model for GARCH-GJR. Note also 
that the GJR specification is Lagrange Ratio Test preferred for all series relative to an 
exponential GARCH lag specification (Nelson, 1991). 
18

 The number of freedoms is estimated. 
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We employ the BHHH
19

 algorithm for estimation in GAUSS
20

 for all series. The final iteration 

employs the Newton-Raphson
21

 algorithm to extract all information from the Hessian matrix. 

Hence, the t-ratios are based on the sum of the kxk matrix of second differentials over n 

observations. 

 

4  Empirical results 

 

Maximum likelihood estimates of the parameters for the BIC preferred ARMA-GARCH lag 

specifications for the conditional mean and volatility are reported in Table 6 for all series. 

Among the four trading frequency series, only the most frequently traded series report a 

significant and positive i coefficient in the mean equation. The index series report significant 

and positive i coefficients.  

{INSERT TABLE 7 ABOUT HERE} 

 

Autocorrelation is statistical significant in all series. The autocorrelation moves from significant 

positive coefficients and therefore negative serial correlation for the thinly traded series to 

significant negative coefficients and therefore positive serial correlation for the frequently 

traded series. The result suggests that assets in thinly and frequently traded portfolios exert 

different price adjustment mechanisms. The thinly traded assets seem to overreact from 

shocks at t-1 and therefore next period at t reverse this overreaction and move prices back to 

a new and now correct price (mean reversion). The positive autocorrelation (1) coefficients for 

the frequently traded assets suggest an adjustment to new information at both t and t+1. In 

both cases prices do not adjust immediately to new information. However, depending on 

trading frequency, asset prices either overreact and reverse or adjust slowly over several 

days. However, be aware of the series of zero returns in thinly traded assets, which may 

induce spurious autocorrelation in theses series.  

 

We find cross-autocorrelation (i,j) (Lo and MacKinlay, 1990) for all series except for the most 

frequently traded series. The pattern in the cross-autocorrelation implies mainly influence from 

series that show more frequent trading. However, also here thinly traded series induce 

spurious cross-autocorrelation. The estimated i coefficients on the GARCH-in-Mean terms 

show no significant “mean” effects. This is also true for the market indices. The degree of 

freedom coefficients (i) suggest thick distribution tails. For all series the coefficients are 

strongly significant and show values ranging between 5 and 6.5.  

 

Among the estimated conditional variance coefficients, which are all strongly significant we 

find a clear pattern. The past squared errors (a1) have more influence over the conditional 

                                              
19

 The BHHH algorithm is described in Berndt, Hall, Hall and Hausmann (1974). 
20

 Gauss is a programming and estimation tool from Aptech Systems 
21

 The Newton-Raphson algorithm estimates the Hessian matrix directly. 
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variance of the frequently traded portfolios than they do over the conditional variance of the 

thinly traded portfolios. The two market indices seem to report shock effects in line with the 

effects of the two frequently traded portfolios. In contrast, the past conditional variance (b1) 

exerts a greater influence over the current conditional variance in the case of the most thinly 

traded series. Also for the conditional variance the two market indices seem to follow the 

results from the two frequently traded portfolios for past conditional variance. Hence, the 

combination of these two features of the conditional variance suggest that although shocks to 

the volatility of thinly traded portfolios have less impact than shocks to the volatility of 

frequently traded portfolios, they are much more persistent. Finally, for all portfolios and 

indices we find a negative asymmetric volatility coefficient (i), which imply higher volatility 

from negative shocks in all series. The negative asymmetric volatility is insignificant for the 

most thinly traded series but increases in size and significance as trading frequency increases.  

 

To test the validity of our results, we perform several model specification tests for all six return 

series. As a first specification test, we calculate the sixth order Ljung and Box (1978) statistic 

for the standardised residuals
22

 (Q) and squared standardised residuals (Q
2
) for all six series. 

For all series Table 7 shows no significant evidence of serial correlation in the standardised 

residuals (Q(6)) at 1%. However, for the squared residuals up to lag 6 (Q
2
(6)) the thinly traded 

series report significant autocorrelation, while all other series report insignificant 

autocorrelation. The numbers for kurtosis and skews for the standardised residuals are lower 

in absolute values for all series. Hence, the ARMA-GARCH filter suggests clearly more normal 

residuals. This result is confirmed by the K-S Z-test statistic (not reported). 

 

Table 8 report extended model specification tests. Table 8 reports the ARCH, RESET and 

BDS test statistic for the BIC preferred ARMA-GARCH standardised residuals () and adjusted 

standardised residuals
23

 (ln(
2
)). The ARCH test statistic reports conditional homoscedasticity 

for all series except the most thinly traded series. The RESET test statistic cannot reject 

linearity in the mean for any series. The BDS test statistic rejects identically and independently 

distributed residuals (iid) for the most thinly traded series and the equal-weighted market 

index. Hence, the model specification test statistics suggest that the ARMA-GARCH model 

seems to capture most of the market dynamics appropriately. However, for thinly traded series 

the ARCH and BDS test statistics suggest a wrongly specified model. The result induce that 

the ARMA-GARCH model does not appropriately describe thinly traded series and long series 

of zero returns. Furthermore, the inclusion of the non-linear dependent ARMA-GARCH 

residual and thinly traded series into the index series seems to induce a wrongly specified 

model also for the equal-weighted market index.  

 

{INSERT TABLE 8 ABOUT HERE} 

                                              
22 Standardised residuals are calculated as t/(ht* i/(i-2)) where i is the degree of freedom 
in the student-t distribution. 
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Finally, Table 9 reports three simple bias tests and one joint test (Engle and Ng, 1993). Table 

9 from column 2 to 6, report significant (t-1
.
St-1) biases. Hence, bad news is not very well 

predicted by our model. Especially, the thinnest traded portfolio suggests that bad news is 

badly predicted. Moreover, the joint bias test statistic in column 7 and 8, reports significant 

prediction biases for the most thinly traded series.  

 

{INSERT TABLE 9 ABOUT HERE} 

 

5 Findings from the Norwegian thinly traded market 

 

The main focus of this investigation is characteristics in thinly traded markets, especially non-

synchronous trading and non-trading effects as well as conditional heteroscedasticity and 

volatility clustering. The Norwegian market exhibit characteristics in trading volume (NOK) that 

make it possible to establish asset portfolio series that contains the desired trading frequency 

characteristics. Hence, the investigation looks for trading volume characteristics in the mean 

and volatility equations as well as in the overall model specification and discuss implications 

for market dynamics in thinly traded markets. 

 

Only the most frequently traded series and the two market indices report significant positive 

drift, while the three more thinly traded portfolios report non-significant drift. These results 

together with the significant and positive i coefficients for the two market indices, suggest that 

a significant and positive drift may solely originate from continuously traded series. Moreover, 

it seems to be the case that series exhibiting non-synchronous trading and non-trading 

characteristics reject positive drift. For an investor in the Norwegian market our results imply 

that in a long hold strategy, thinly traded series should be avoided and should only involve 

continuously traded assets. Furthermore, as the most thinly traded assets also imply the high 

non-synchronous trading and non-trading effects, the assets may induce high spurious 

autocorrelation and cross-autocorrelation. These non-synchronous trading and non-trading 

effects may also influence the drift coefficients for these assets. The direction of the influence 

may be difficult to classify, but as zero return will be registered in a non-trading period, the drift 

will probably be influenced towards a zero drift coefficient
24

. 

 

Autocorrelation is found in all series, which imply substantial predictability in asset returns for 

the thinly traded Norwegian market. The thinly traded series report strong negative 

autocorrelation while the frequently traded series and the indices exhibit strong positive 

                                                                                                                                  
23

 See deLima, Pedro (1995a,b) 
24

 Solibakke (2000) shows that the drift becomes more positive by applying virtual returns and 
a continuous time GARCH model. 
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autocorrelation
25

. However, returns for thinly traded series may contain characteristics of non-

synchronous trading and non-trading effects, which may cause spurious autocorrelation as 

discussed in Campbell et al. (1997). Hence, our results for thinly traded series implying 

overreaction and reversion, may originate from spurious autocorrelation, which stem from 

many zero return observation. The validity of autocorrelation results for thinly traded series 

may therefore be disputed. For the frequently traded series the positive serial-correlation 

coefficient suggests adjustment to new information that may take several days. It is well 

known from international literature that positive dependence (Taylor, 1986/2000) in assets 

returns is more often found than negative dependence. Hence, collectively, the serial-

correlation coefficients imply substantial predictability among all the return series. This 

predictability results for frequently traded series are not disputed while thinly traded series may 

show spurious predictability
26

. Moreover and probably very important for investors in the 

Norwegian market, by employing frequently traded assets in portfolio construction and 

prediction, our results seem to suggest a consistent short run predictability of asset returns. 

Note that the reported negative autocorrelation for thinly traded series may be spurious and 

may distort the predictability in these series. Hence, also applying estimation results form 1987 

to 1994, the overall predictability may therefore be illusionary for the Norwegian market. 

 

We find significant cross-autocorrelation among trading volume series. The cross portfolio 

results therefore strongly indicate that the thinly traded Norwegian market show return effects 

from more frequently traded series into more thinly traded series. That is, the result suggests 

that thinly traded series adjust to new information with a lag to more frequently traded series 

(j). Hence, new information is incorporated into assets starting with the most frequently traded 

assets and then with a lag, moved into more thinly traded assets. Hence, investors may 

therefore follow the following procedure to obtain a long run profit. Study carefully the most 

frequently traded asset within an industry. When these assets move up or down take 

appropriate positions (long or short) in more thinly traded assets. The asset position must be 

constantly monitored and may be expensive owing to transaction costs. Moreover, an investor 

that builds a portfolio based on trading volume and combine highly and lowly traded assets 

within a industry into portfolios, he or she can adjust positions based solely on movements in 

the most frequently traded assets. In summary, the most frequently traded assets leads the 

market while more thinly traded assets copy these movement with a lag. However, thin trading 

implies spurious cross-autocorrelation. Hence, the lead and lag results for thinly traded assets 

may turn spurious. However, for more frequent traded assets the lead and lag structure may 

still be valid. 

 

                                              
25 A negative dependence story can be found in Poberta and Summers, 1988, and Fama and 
French, 1988 and a positive dependence story can be found in Taylor, 1986/2000. 
26

 The positive autocorrelation results seem to disappear in the 1987-94 sub-period. Hence, 
we find no obvious autocorrelation results after the crash in 1987 for the thinly Norwegian 
market. 
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As the “in-Mean” coefficients are insignificant for all six series and we reject the residual risk 

hypothesis (Lehmann, 1990) for the Norwegian market. The degree of freedom coefficient (ui) 

is strongly significant and induces deviation from normally distributed return series. The results 

seem therefore to indicate leptokurtosis in all six series independently of frequency of trading 

and non-trading effects. 

 

The conditional variance equation report several interesting features from the thinly traded 

Norwegian market. Firstly, the ARCH-coefficient (shock) increases the higher the trading 

frequency. Hence, past squared errors influence strongest today’s volatility for the most 

frequently traded series. The two market indices show results close to the two most frequently 

traded series. The past squared error for thinly traded series show a low volatility influence 

relatively to more frequently traded series. However, also for the conditional volatility we may 

find spurious past squared error results. In case of non-trading the observed return is zero and 

may produce artificial shocks for the volatility process. For thinly traded series we may 

therefore observe a spurious and too low ARCH coefficients. Secondly, the past conditional 

volatility influences strongest today’s volatility for the thinnest traded series. Autocorrelation in 

the conditional volatility process seems therefore to be highest for the thinnest traded series. 

However, note that the non-synchronous trading and non-trading effects may cause spurious 

autocorrelation into the conditional volatility process. This may distort any volatility patterns for 

non-trading series. 

 

Thirdly, the persistence (ai + bi) is strongest for the thinnest traded series. A clear picture of 

the persistence in the volatility process can be obtained by calculating the half-life of a shock 

to the process, that is, the time that it takes for half of the shock to have dissipated. Some 

algebra shows that the half-life in trading days for portfolio i may be calculated as
27

 Half-lifei  = 

ln(0.5) / ln(ai,1  + bi,1)   and for calendar days as (252 
.
 Half-lifei ) / 365 = ln(0.5) / ln(ai,1  + bi,1). 

Hence, Half-lifei  = (ln(0.5) / ln(ai,1  + bi,1)) 
.
 (365/252). For our six return series we report the 

results for both formulas in Table 10. Table 10 suggests a significant difference in persistence 

length over the six series. Highest persistence is found for the thinly traded series, which 

report shock persistence for approximately 50 trading days. For the most frequently traded 

series the persistence is only 6.5 trading days. The information in the shock- and persistence-

effects for series may be useful for investors building volatility strategies in an option market. 

One implication of an active option market that increases trading activity and therefore volume 

in the underlying asset may therefore be higher shock effects and lower persistence, that is a 

more erratic volatility. However, non-synchronous trading and non-trading effects may distort 

our result. Series strongly influenced by zero return observations may emphasise the 

autocorrelation in conditional volatility too much, which may result in spurious persistence 

coefficients. Applying results from the more frequently traded series imply rather strong non-

trading effects. The three more frequently traded series plus the indices show all quite similar 

                                              
27

 See Taylor, 1986/00 for details. 
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results. Hence, non-synchronous trading and non-trading effects may be severe for the 

conditional volatility in the thin Norwegian market. Fourthly, the constant (mi,0) increases the 

higher the frequency of trading. Hence, as mi,0 = i,0 
.
 Vi and i,0 + ai,1 + bi,1 = 1, the weight to 

the long-term average volatility seem to increase the higher the trading frequency. This feature 

implies that weight to the unconditional volatility is at its lowest for the most thinly traded 

series. Fifthly, asymmetric volatility () is present in all series except for the most thinly traded 

series. The negative coefficients imply that it is the most frequently traded series that seem to 

show the highest asymmetry in the conditional volatility. The lack of asymmetry for the thinly 

traded series may also be attributed to the strong serial correlation. As both the weight to the 

long run average volatility and the shock effects is low in this series, the autocorrelation 

structure seem to be the dominant factor for the conditional volatility process. For all other 

series the asymmetric coefficient is negative and significant.  

 

Turning now to the specification tests, we find several interesting features, which may 

originate from non-synchronous trading and non-trading effects. Firstly, the Q
2
(6) statistic 

report autocorrelation for the thinnest traded series. Neither market index nor more frequently 

traded asset series report autocorrelation in first and second moment residuals. Secondly, the 

ARCH test statistic reports conditional heteroscedasticity for the most thinly traded asset 

series. As for autocorrelation neither market index nor more frequently traded asset series 

report conditional heteroscedasticity. The RESET test statistic reports linearity in the 

conditional mean for all six series. Finally, the BDS test statistic reports general non-linearity 

for the thinnest traded series and the equal-weighted market index at some dimension (m). 

The three more frequently traded series and the vale-weighted index series show a BDS test 

statistic that fail to reject i.i.d. at any dimension (m). It seems therefore to be the case that the 

inclusion of the thinly traded series seems to introduce non-linearity into the equal-weighted 

market index. Hence, non-synchronous trading and non-trading effects cause non-linear 

dependence and model misspecification. Consequently, the ARMA-GARCH model 

specification seems not appropriate for thinly traded asset series.  

 

The simple bias tests for volatility prediction show that especially bad news is not appropriately 

predicted in the GARCH-GJR model. However, only the most thinly traded series show biases 

when we perform a joint bias test. Moreover, the prediction bias is not strongly significant in 

the simple test statistic. When models are re-estimated for two sub-samples; 1983-1987 and 

1988-1994, the second time period show a small change in autocorrelation for the conditional 

mean. In particular, after the crash in 1987 the slow adjustment process for the frequently 

traded series has changed to immediate adjustment. That is, no autocorrelation in the 

residuals for these series. The general conditional variance results are maintained in the sub-

periods. However, later years (1988-1994) indicate an increased persistence in the variance 

process. For the thinnest traded series the conditional variance process show almost 

integrated GARCH.  
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Finally, Table 11 reports the first and second moments for the conditional volatility and the 

calculated unconditional volatility from the GARCH models
28

.  The conditional volatility mean 

and the calculated unconditional volatility both report an U-shaped pattern as also reported for 

Ri
2
 in Table 2. The calculated unconditional volatility is quite close to the conditional volatility 

mean. Moreover, the higher the trading frequency we find a strong and consistent increase in 

the standard deviation of the conditional volatility series. Hence, we find highest mean but 

lowest standard deviation for the conditional volatility process of the thinnest traded series and 

lower mean but highest standard deviation for the most frequently traded series. The results 

are in accordance with the ARCH/GARCH parameters for the conditional volatility estimations. 

Now calculation the index standard deviation divided by the mean. This index measures the 

relative uncertainty/change in the volatility process. The result shows clearly that it is the most 

frequently traded series and the two market indices that show highest changing volatility 

around a mean. Hence, non-trading effects show high volatility but lower changes in volatility. 

However, as the model specification is disputed for the most thinly traded series this result 

may be spurious. For option markets on individual and index series the estimations may 

produce valuable information for strategists. As the Norwegian market quote options for only 

continuously traded series, investors should be aware of this changing volatility result in 

applying the Black & Scholes option pricing formula. Estimates of the underlying asset’s 

volatility may be very important for correct option pricing in these assets. To forecast future 

volatility using GARCH (1,1) model results is a well-known and easy exercise.  

 

{INSERT TABLE 11 ABOUT HERE} 

 

6   Summaries and Conclusions 

 

We have modelled and estimated several ARMA-GARCH-in-Mean model specifications for 

the Norwegian thinly traded equity market. We apply trading volume as a proxy for trading 

frequency. As all the estimated ARMA-GARCH lag specifications for our series are BIC 

preferred, the model captures the autocorrelation and cross-autocorrelation structure in the 

conditional mean and the shocks, autocorrelation, persistence and asymmetry in the 

conditional volatility across varying trading frequencies. Moreover, the model measures the 

effect of “thick distribution tails” (leptokurtosis) through the degree of freedom parameter in the 

student-t distribution and potential residual risk is measured applying the in-Mean 

specification. The thinnest traded series and the equal-weighted index series report ARMA-

GARCH lag structure misspecification. The results for these series may be spurious and must 

therefore be interpreted with great caution.  

 

                                              
28

 The unconditional variance in a GARCH(1,1) specification is the long-run average volatility. 
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The study reports the following conclusions. ARMA-GARCH models seem to fit the Norwegian 

thinly traded market well, except for thinly traded series. The thinly traded series exhibit severe 

non-synchronous trading and non-trading effects, which induce data dependence and 

misspecification in the BIC efficient ARMA-GARCH model. The equal-weighted index series 

seem to inherit these data dependence and misspecification results in the Norwegian market. 

For relatively frequently traded series we find a consistent pattern in autocorrelation, cross-

autocorrelation, volatility clustering and asymmetric volatility. For all these series we find 

insignificant specification test statistics. Hence, the ARMA-GARCH model and its parameter 

results for relatively frequently traded series suggest that previous regression models in the 

Norwegian market may have been wrongly specified owing to four specification failures. 

Firstly, a failure to efficiently incorporate the serial correlation structure in the conditional mean 

applying a BIC preferred lag specification. Secondly, a failure to incorporate the appropriate 

structure for measuring weight to long-run average volatility, shocks, autocorrelation, 

persistence and asymmetric volatility in the conditional variance equation applying a BIC 

preferred lag specification. Thirdly, a failure to specify thick-tailed distribution characteristics 

obtaining close to normally distributed residuals. Fourthly, a failure to control for data 

dependence in the model residuals, which implies spurious parameter results for thinly traded 

asset series. 

 

Consequently, non-synchronous trading and non-trading seem to imply an extra challenge for 

modelling the dynamics in thinly traded markets. Classical regression models assuming 

conditional homoscedasticity seem obsolete. Moreover, for the applied ARMA-GARCH 

methodology, which uses the residuals for volatility specification, we find strongly significant 

misspecification for thinly traded series. Hence, the ARMA-GARCH methodology seems also 

to be a wrongly specified model in thin markets and thin series. As stochastic volatility models 

generate volatility processes independently of the conditional mean, the methodology may be 

an alternative model specification
29

. Alternatively, we may apply virtual returns (Campbell et 

al., 1997) and continuous time GARCH models (Drost and Nieman, 1993) for thin series. 

However, for relatively frequently traded series the ARMA-GARCH model seems appropriate. 
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