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Abstract. 

 

We study the mean and volatility of individual stocks in the thinly traded Norwegian equity 

market in an open (Monday-Friday) and closed (Weekends and Holidays) market. When 

the market is open we calculate mean and volatility ratios of consecutive trading versus 1, 

2 and 3 days of non-trading. When the market is closed we calculate the mean and 

volatility of consecutive trading versus 1 (Holiday) and 2 (Weekend) days of non-trading. 

Building a model applying Brownian motions we can hypothesize mean and variance 

ratios in open and closed markets. The empirical results show that in an open market our 

hypothesized random walk mean and variance ratios are not rejected. Hence, in an open 

market the mean and volatility is independent of whether an asset is traded or not. In 

contrast, in a closed market our hypothesized variance ratios are strongly rejected. 

Hence, the hypothesized volatility is dependent on an open market and therefore volatility 

seems to be nearly unchanged in closed markets. The trading independence result 

together with Brownian motions implies that we should find near normal return 

distributions for both frequently and thinly traded assets. These findings prevail after 

adjusting for non-synchronous trading applying Poisson distributed trade arrivals and 

imply that trade arrivals and return distributions are independent. 
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1   Introduction 

 

This paper studies mean and variance ratio for listed assets in the thinly traded Norwegian 

market. In the international finance literature much attention is focused on mean and 

variance processes and the information arrival process. Assuming trading volume and 

frequency of trading are able to proxy for information arrival and using the fact that the 

Norwegian market contains assets that show both thin and frequent trading, the 

Norwegian equity market may show trading characteristics that produce new knowledge 

to the microstructure of thinly traded markets.   

 

Bachelier (1964) first developed the random walk model that uses a stochastic process 

called Brownian motions that assumes that security prices from transaction to transaction 

are independent, identically distributed random variables. Bachelier’s model, together with 

the central limit theorem, suggests that price changes are normally distributed and that 

their variances will be linearly related to the time interval. However, we observe 

leptokurtosis in stock market return series. In the literature, one prominent explanation for 

the observed departure from Bachelier’s model is the mixture of distributions hypothesis. 

This maintains that trade-to-trade asset returns exhibit leptokurtosis because they are 

really a combination of return distributions that are conditioned on information arrival. This 

means that periods of little or no information arrival result in observed return distributions 

different from periods when information arrives frequently. Hence, the return distributions 

on thinly traded stocks should differ from the distributions of stocks that are frequently 

traded. A thinly traded stock might not be traded for days, and when it is traded, it is often 

traded on low volume. Non-trading pricing processes are therefore an important factor for 

the understanding of return distributions. Moreover, pricing processes should be 

understood in both open (Monday through Friday) and closed markets (Weekends and 

Holidays). By studying mean and variance ratios for highly divergently traded stocks in an 

open market, the importance of trading activity may be measured. In addition, by studying 

the same ratios when the markets are closed we may find that pricing processes show 

independence of an open market. In combination these findings may produce results that 

imply new knowledge to the distribution assumptions that is the foundation of almost all-

financial theory. Moreover, to my knowledge a simultaneous comparative study of open 

and closed markets, and trading and non-trading, has so far not been performed. 

 

By developing and applying a model for non-synchronous trading we can hypothesize the 

mean and variance ratios for both open and closed markets. In open markets we 

hypothesize mean and variance ratios for consecutive days of trading versus 1, 2 and 3 

days of non-trading. In closed markets we hypothesize ratios for consecutive days of 

trading versus 2 (Weekends) and 1 (Holidays) days of non-trading
i
. Hence, the ratios 

should produce characteristics in both open and closed markets. Our results imply that we 
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are not able to reject the random walk model in an open market independently of trading 

frequency of individual assets. Hence, the mean and volatility is independent of the 

frequency of trading. Furthermore, in a closed market neither the hypothesized mean 

ratios can be rejected. However, in a closed market the hypothesized variance ratios are 

strongly rejected. Hence, the characteristics of the random walk model are not rejected in 

an open market but are strongly rejected in a closed market. The result opposes earlier 

classical results in international financial studies (see section 2 below). 

 

As the Norwegian market is a competitive dealer market, the results from the study should 

be applicable to quite a number of thinly traded markets in Europe, America and Asia. 

Moreover, as this study analyses non-trading processes in the Norwegian computerized 

market, it should also be applicable to the US OTC (Over The Counter) market, which is 

both a computerized and by definition a thinly traded market. 

 

The rest of the paper is organised as follows. Section 2 gives a literature review. Section 3 

defines a model for the stochastic return process. Section 4 defines the empirical data. 

Section 5 reports our empirical results with economic implications and, finally Section 6 

summarizes and concludes our findings. 

 

2 Literature review 

 

Empirical studies of mean returns and transaction arrivals typically reject simple 

assumptions as (1) mean returns are known to differ over weekends, holidays, and month 

of the year (French, 1980), Gibbons and Hess, 1981); (2) return variances are known to 

be lower during periods when the market is closed including weekends (Fama, 1965), 

exchange holidays (French and Roll, 1986) and overnight periods (Lockwood and Linn, 

1990); (3) return variances exhibit season differences such as across days of the week 

(Lockwood and Linn, 1990) and near the open close of trading hours (Wood et al., 1985), 

Harris, 1986, and McInish et al., 1990). An increasing body of evidence following GARCH 

specifications indicates that return variances are also auto-regressive (French, Schwert, 

and Stambaugh, 1992; Solibakke, 1997).  

 

Similarly, transaction arrivals do not appear to arrive independently over time. For 

example, Jain and Joh, 1988 find that trading frequency is dependent on the time of day in 

an open market; namely, trading is heavier in the beginning and end of the trading day 

and lighter in the middle. In a semi-non-parametric GARCH setting, Gallant, Rossi and 

Tauchen, 1992, find that return variances are serially, cross and serially cross dependent. 

That is, variance and trading volume are jointly determined both cross sectional and over 

time. 
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In order to investigate the nature of the returns of differently traded assets, a good starting 

point is the return generating model set forth in Scholes and Williams (1976,1977). This 

formulation models returns and transaction arrivals and will be discussed fully in Section 3 

below. Most studies in this literature review confirm that returns and volume are 

simultaneously and jointly determined and are linked to information arrival. If we can 

determine how returns and trades are distributed, the former literature should also give 

increased understanding of how information changes affect the market. 

 

2.1   Returns in open and closed markets 

 

When stock markets are closed, no trades occur in these markets. Thus although investor 

expectations about returns may have changed, or information arrives that would alter the 

expected return on a stock, price effects are not observable until the markets reopen. A 

common problem, therefore, in theoretical and empirical studies of financial markets is the 

identification of returns when the markets are closed or in non-trading periods. Many 

theoretical models of the return generating process assume that price changes are 

independent of when and how often trades occur. That is, there exists a “true” price 

whether or not a trade occurs. Thus, under this proposition a return is generated both over 

weekends and evenings when the market is closed and in a thin market when the market 

is open but the asset is not frequently traded (e.g. Scholes & Williams (1976, 1977 and Lo 

& MacKinlay (1990)). This assumption draws theoretical justification from models of 

symmetrically informed traders from, for example, Marshall (1974) and Rubinstein (1975) 

in which prices can change without trading as investors’ expectations change in unison. 

 

An opposing hypothesis is that returns and transactions occur only when information 

arrives. With regard to returns, Ross (1989) assumes that information arrives through a 

Martingale process, and though no-arbitrage conditions, demonstrates that return 

variance is directly related to the flow of information. Similarly, transaction arrivals are also 

likely related to the flow of information. In this case, price changes when there is new 

information and the price changes are coincident with trades. Non-trading periods could 

represent periods in which no information arrives and hence price and return do not 

change. 

 

The true relationships between information arrivals, transaction frequency, and return, lie 

probably somewhere between these two extremes. For instance, French and Roll (1986) 

find that prices are more volatile when markets are open than when they are closed. Their 

results suggest that there is a continuous component to the return, as well as a 

component that is driven by the information arrival. If one assumes further that information 

arrival is more likely to happen when markets are open, then one is likely to find that 

trading frequency is positively related to the mean and variance of returns. 
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Booth and Chowdhury (1996) confirm that stock return variances are higher during trading 

hours than during non-trading hours, and provide evidence consistent with the private and 

public information hypothesis and against the noise trading explanations. Subrahmanyan 

(1991) shows that when informed traders are risk averse, noise trading raises price 

volatility because these traders respond less aggressively to an increase in noise trading 

than do risk-neutral informed traders. Further, De long et al. (1990) suggest that presence 

of a certain type of noise traders, “positive feedback traders”, may lead to an increase in 

volatility. This occurs when informed speculators, rather than taking positions opposite the 

positive feedback traders, reinforce the market price movement away form its 

fundamental value. 

 

2.2 Returns of individual stocks in Thinly Traded Markets 

 

In a theoretical development of the role of thinness in securities markets, Cohen et al. 

(1978) use compound Poisson processes to model the discrete time arrival of 

transactions. They show that under heterogeneous expectations, variance is inversely 

related to the market value of a stock. Using total market value as an inverse proxy for 

thinness, they find that thinness is a significant determinant of variance. Silber (1975) 

investigates empirically the effect of thinness on stocks listed on the Tel Aviv Stock 

Exchange. He finds that two salient characteristics of thinness are a large bid-ask spread 

and a large variability in price per unit of excess demand. Moreover, he examines the 

relationship between price change volatility and the following variables: (1) the volume 

traded of each security; (2) the total supply outstanding of each security; (3) the number of 

stockholders; (4) the total asset of the firm; and (5) the number of days on which no 

trading occurred in each security during a particular interval. His results show that trading 

volume is the best indicator of lack of thinness for equity markets. In the bond market, the 

number of days of non-trading is the most consistent indicator of thinness followed by 

trading volume and size of the issue. 

 

Moreover, because securities in thin markets often trade only once every several days, 

there exists a measurement problem for empirical studies that use daily returns. 

Observed trade-to-trade does not correspond to true daily returns since securities do not 

trade every day at market close. Therefore, any use of reported daily returns rather than 

true returns results in the econometric problem of errors in variables.  Non-synchronous 

trading really means that asset prices are recorded at time intervals of one length when in 

fact they are recorded at time intervals of other, possible irregular, lengths. As shown by 

Scholes and Williams (1977) and Lo and MacKinlay (1990), failing to account for non-

synchronous trading problem results in overstated variances and spurious auto- and 
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cross-correlation. Moreover, Scholes and Williams (1977) find those ordinary least 

squared estimators for alphas and betas in the market model are biased and inconsistent. 

 

Lo and MacKinlay (1990a) develop a stochastic model of non-synchronous asset prices 

that accommodates the problem of non-trading. In particular, their model assumes more 

realistically that the time between trades is stochastic rather than limiting the model by 

forcing a trade per day, as Scholes and Williams did (1977). Lo and MacKinlay also derive 

closed form expressions for the unconditional means, variances and covariance of 

observed returns as functions of the non-trading process. Among other results, they find 

that non-synchronous trading does not affect the means of individual returns, while; on the 

other hand, it increases the observed variance of these same security returns (if mean 

returns are different from zero)
ii
. 

 

3 A Model for a Stochastic Return generating process 

 

Assume that the return is a continuously compounded rate Rt per trading period {t-1,t}. 

The price of the asset at time t is log-normally distributed and denoted Pt, so  

Rt = ln )(
1t

t

P

P
 and normally distributed.  We therefore assume further that Pt is 

characterized by a Brownian motion with parameters  and 
2
 selected so that E(Rt) =  

and Var(Rt) = 
2
. The simplest representation of the (arithmetic) Brownian motion 

(Bachelier, 1964) is Rt =   dt   +    dzt, where dzt is the increment of a Wiener process, 

defined as dzt = t 
.
 dt , where t has zero mean and unit standard deviation, E(dzt) = 0 

and Var(dzt) = E((dt)
2
) = dt.  is called the drift parameter, and  the variance parameter. 

Note that over any time interval dt, Rt, is normally distributed, and has expected value 

E(Rt) =  
.
 dt and Variance Var(Rt) = 

2
 
.
 dt. Furthermore, note that a Wiener process has 

no time derivative in a conventional sense; 
dt

dzt
 = t 

.
 (dt)

-1/2
, which become infinite as dt 

approaches zero.  

 

In general, the return Ra,b over a time-period {a,b} is given by Ra,b= ln )(
a

b

P

P
 , where Pa 

and Pb is the observed prices at time a and b (a < b). When a and b is constantly 

changing among the component stocks, this may cause non-synchronous trading, as the 

time interval between observations change (possibly irregular). If we assume that the 

return generating process Ra,b follows an arithmetic Brownian motion a model for Ra,b is 

given by  

Rt = (b - a) 
.
   +   

.
 (dzb – dza )    (1) 
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where dzb - dza is normal with mean 0 and variance b - a. Now, let t-1+v be the time of the 

last trade during trading period {t-1, t} and let k be the number (k= 0,1,2,3) of trading 

periods after {t-1, t} in which there are no trades (v > 0). This time-definition gives a 

definition of v that is the time until the last trade of day t. This means that there is at least 

one trade during {t - 1 + k + 1, t - 1 + k + 2}. Let u be the time for the trading period {t + k, t 

+ k + 1}. I illustrate the notation and trading sequence in Figure 1. 

 

{Insert Figure 1 about here} 

 

R
obs

 represents the observed k + 1 period return based on the last trades in period {t-1, t} 

and {t + k, t + k + 1}. Assuming that k, and v are independent and that u and v are 

identically, independently distributed, employing equation (1) leads to 

 R
obs

  =   
.
 (( t + k + u) - ( t - 1 + v)) +  

.
 ( dz (t+k+u) - dz ( t-1+v)) and  

 R
obs

  =   
.
 ( k + 1 + u - v) +  

.
 ( dz (t + k + u) - dz ( t - 1 + v)) 

Using standard result from stochastic calculus gives us that the expected return E(R
obs

) 

for a given day equals 

E(R
obs

) =   
.
 ((k + 1 + E(u) - E(v)) +  

.
 ( E(dz (t+k+u)| k) - E(dz ( t-1+v)| k)) 

 E(R
obs

) =   
.
 ( k + 1) +  

.
 (k + 1) 

.
 (0) 

 E(R
obs

) =   
.
 ( k + 1). 

That is, the expectation of observed returns is equal to the true mean one-period return 

multiplied by k + 1. This is consistent with both Scholes and Williams (1976, 1977) and Lo 

and Mac-Kinlay (1990) who find that mean returns are unaffected by non-synchronous 

trading. To compute the observed variance for R
obs

, Var(R
obs

 | k), we can use the known 

fact that Var (A) = Var (E ( A | B)) + E (Var (A | B)), for arbitrary A and B. Thus, 

 Var (R
obs

 | k) = Var (E ( R
obs

 | k, u , v)) + E (Var (R
obs

 | k, u, v)).  

Some algebra leads to:  

Var (R
obs

 | k) = Var ( ( k + 1 + u - v)) + E (
2
 ( k + 1 + u - v)) and  

Var (R
obs

 | k)= 
.
 Var ( 0 + u - v)) +  

2
 
.
 E( k + 1 + u - v).  

Now, since u and v are identically and independently distributed 

 Var (R
obs

 | k) = 2 
.
 

.
 Var ( u ) +  

2
 
.
 ( k + 1)            (2) 

which provides a general form of the relationship between observed and true variance. 

Equation (2) allows for correction of the variance of measured returns in thinly traded 

markets. If we determine the variance of the measured returns, their means, and the 

variance of the time interval between the beginning of a day and the last trade, then the 

true variance of returns can also be determined. However, unless we assume a specific 

distribution for the trading process, Var (u) cannot easily be determined and a closed form 

relationship between measured and actual returns cannot be obtained. Section 5 shows 

the adjustments of the variance when we assume a Poisson distribution of the trading 

process. 
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4  Data 

 

The study uses daily and return series for Norwegian stocks spanning the period from 

October 1983 to February 1994. This high frequency time series database gives at most 

2611 observations for each asset. However, the Norwegian sample was chosen as this 

thinly traded equity market has sufficient number of divergently traded stocks (long 

periods of trading and non-trading) that make it possible to study pricing processes during 

an open and closed market. 

 

Daily trading volume data was obtained from the ‘Oslo Børs Informasjon’ Database. All 

stocks in the database are used in the analysis. We have divided the period into two sub-

periods; one period from October 1983 to September 1987 (1019 observations) and one 

period from December 1987 to February 1994 (1546 observations). Daily stock returns 

are calculated as the change in the logarithm of successive closing prices. Sample assets 

satisfy the following criteria: 

 

(1) The assets are listed at the Norwegian Stock Exchange and information of daily 

asks, bids and settlement prices including trading volume were available. 

(2) The assets must have at least 5 return observations of both consecutive (k=0) 

and kO (1, 2, 3) non-trading day(s) when the market is open and kC (Weekend 

and Holiday) when the market is closed. 

 

Specifically, if an asset is selected for the kO = 1 sample
iii
, then the asset has registered at 

least 5 consecutive daily trading observations and 5 one day non-trading observations. 

For the weekend sample kC, the asset must have registered at least 5 consecutive daily 

trading observations and 5 Monday return observations. Finally, individual asset returns 

for other kO’s (more than 3 days of non-trading in an open market) and kC’s (several 

consecutive holidays), are discarded mainly owing to few observations
iv
. 

 

Table 1 presents summary data on frequency of trading/non-trading for the stocks in all 

five above defined samples. As can be seen from Table 1, not all the stocks were listed 

for the entire period and sub-periods. In order to determine the percentage of trading days 

for a given stock, only days on which the stock is listed and a first settlement price are 

quoted, are included in the calculations. Among the stocks in the samples for kO =1, 2, 3, 

there is quite a large range in the frequency of trading. For kO = 1 and the entire period, 

from June 1 1983 to February 1 1994, the mean percentage of trading days is 60.39%, 

while the minimum is 5.47% and the maximum is 99,25% (not reported). Hence, the kO = 

1 sample contains both frequently and infrequently traded stocks. Moreover, for weekends 

and holidays kC, the percentage of trading days increases in the sample because these 

samples also contain the most frequently traded assets
v
. Finally, we divide the periods as 
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shown above due to two market observations. The first is the crash in October 1987 and 

the second is the fact that Oslo Stock Exchange switched to an electronic trading system 

early in 1988. 

 

Table 1 implies that return observations on consecutive days are more numerous than k-

days’ returns that include k non-trading day(s). Consecutive-day variances are therefore in 

general, estimated with more precision than variances measured over k + 1 days. The 

total sample contains 227 assets spanning the whole period. For kO = 1, 2, 3, and  

kC =1(holidays) and 2 (weekends) we emerge with 220, 161, 107, 173 and 224 individual 

assets, respectively. These five samples of individual asset for return and variance 

calculations are used in the remaining sections to test our hypothesis.  

 

{ Insert Table 1 about here. } 

 

5  Empirical Results 

5.1  Means and Variances  

 

To calculate means and variances for our observed returns, we apply the following 

procedures. Firstly, each asset’s compounded mean returns are calculated for kO = 0, 1, 2 

and 3 non-trading days
vi
 in an open market and for weekends (kC =2) and holidays  

(kC = 1) in a closed market. Figure 2 illustrates these calculations for consecutive mean 

returns (k = 0) and for three day mean returns (k = 2). Hence, for k=0, the return is the 

calculated continuously compounded return using closing prices at t = 1 and t = 2. With 

two days of non-trading also shown in Figure 2, the 3-day mean returns is calculated as 

the continuously compounded return over 3 days using closing prices at t = 2 and t = 5. 

 

{ Insert Figure 2 about here. } 

 

From these mean returns, sample means and variances are calculated at the sample 

level for each category (k=0, kO=1,2,3, and kC=2 (weekends) and kC=1 (holidays). Hence, 

each asset will have a mean and variance of returns for consecutive days of trading as 

well as for periods in which there are kO = 1, 2, and 3 days of non-trading in an open 

market. Moreover, we calculate mean and variance for periods in which there are kC=1 

(holidays) and kC = 2 (weekends) days of non-trading when the market is closed. Note 

especially that because an asset must have 5 observations of each return class, our 

procedures imply that frequently traded assets which appeared in the k = 0 versus  

kO = 1 comparison were not likely to appear in the k = 0 versus kO = 3 comparison. Hence, 

we account for the rapid decline of assets for samples kO =1, 2 and 3. Formally, the grand 

means and variances for a given k and all sub-periods are calculated as 
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where 
Obs

ijR  is the total returns for asset j period i ; Nk is the total number of observations 

for a given asset j and non-trading period k; Mk is the total number of assets in the sample 

for k non-trading periods. Thus for each time period we produce sample mean and 

variance across assets for consecutive days of trading and for kO = 1, 2 and 3 days of 

non-trading in an open market and for kC=2 (weekends) and kC=1 (holidays) in a closed 

market. 

 

If the return generating process is, as is commonly assumed, arithmetic Brownian motion, 

then stock return means and variances are linearly related to the time interval. Hence, the 

mean and variance of returns over a period in which there is no trading for k days should 

be k times the mean and variance of consecutive days of trading. Table 2 reports the 

mean returns for each non-trading period for both an open and closed market. The null 

hypothesis is that the non-trading day mean return E(R
obs

 | k) should be k + 1 times the 

consecutive day returns. The alternative is that the non-trading day mean return E(R
obs

 | 

k) is different from k + 1 times the consecutive day returns. Therefore our first hypothesis 

becomes 

Hypothesis 1: 

H0 : E(R
obs

 | kO/C) = (kO/C +1 ) ,  for kO = 1, 2, 3, and kC = 1, 2, 

HA : E(R
obs

 | kO/C)  (kO/C +1 ) ,  for kO = 1, 2, 3, and kC = 1, 2. 

When the market is open applying a two tail t-test
vii

, we find the probability that |t| takes a 

value higher than the calculated value for the degrees of freedom is high (>90%). This 

suggests that when the market is open, the null hypothesis of (kO+1) mean return is not 

rejected for any kO non-trading days. That is, the mean returns may in fact be an integer 

multiple of the time interval. The result is consistent for all non-trading days when the 

market is open over all three periods. However, note the close to zero and negative 

returns for the non-trading days in all periods in contrast to positive returns for consecutive 

days of trading. When the market is closed applying the same two tail t-test, for weekends 

(kC=2) and holidays (kC=1) we find the same results. That is, one (two) day(s) of non-

trading returns when the market is closed may in fact be equal to one (two) days of 

consecutive day returns. The results are consistent over all three periods.  

 

{ Insert Table 2 about here. } 
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The first null hypothesis is strongly rejected and is probably driven by the fact that 

variances are large relative to the magnitude of mean returns. Therefore, to extend and 

further analyse the returns, a second hypothesis is tested. Does a mean k + 1 day return 

equal zero? This hypothesis is set out below. 

Hypothesis 2: 

H0 : E(R
obs

 | kO/C) = ,   for kO = 1,2,3, and kC = 1, 2, 

HA : E(R
obs

 | kO/C)  ,    for kO = 1,2,3, and kC = 1, 2. 

In all cases when the market is both open and closed, using the same form of t-test as 

above, the null hypothesis is not rejected. That is, the mean returns for all categories may 

in fact be zero. As above, this result is also consistent over all three periods. This result is 

also probably driven by a large variance relative to mean. Finally a third hypothesis is 

tested. Does mean k + 1 day-return equal mean consecutive days return? This hypothesis 

is also set out below. 

Hypothesis 3: 

H0 : E(R
obs

 | kO/C) = ,   for kO = 1, 2, 3, and kC = 1, 2, 

HA : E(R
obs

 | kO/C)  ,   for kO = 1, 2, 3, and kC = 1, 2. 

For all cases when the market is both open and closed, the null hypothesis is not rejected. 

That is, the mean returns may in fact be equal to consecutive day mean returns. All three 

hypotheses are therefore not rejected. The result support Scholes and Williams (1977) 

and Lo and MacKinlay (1990c) mean results. Non-trading when the market is open and 

closed does not significantly diverge from the consecutive day mean returns. 

 

However, some observations are interesting and readily available from Table 2. For the 

non-trading cases when the market is open, we find consistent positive mean consecutive 

day returns. The returns are remarkably stable showing results of about 0.3% to 0.4% for 

all the three sample periods. The consecutive daily returns are for all three periods lowest 

for kO = 1 and highest for kO = 3. This suggests that frequently non-traded assets show 

positive returns when they are traded for consecutive days. A possible interpretation is 

that lowly traded assets (periods of non-trading) are rewarded with a highly daily return 

when they are traded for consecutive days. Hence, for thinly traded assets a possible 

interpretation of our results is that there is a trading effect in the market. The positive 

trading return effect seems to increase the thinner the asset is traded in the market. 

Moreover, the non-trading periods kO mean returns are mainly negative except for kO = 1 

and 2 in the first sub-period 1983-87. However, the returns are close to zero. Therefore, 

our results suggest that assets experience higher negative returns the longer the non-

trading periods. In this case a possible interpretation is that there is a non-trading effect 

for long non-trading periods. The non-trading negative return effect seems to increase 

strongly from kO = 1 to kO = 2 and 3. Trading volume in form of the number of trading 

and/or non-trading days is therefore a candidate for an independent variable in cross-

sectional regressions of daily stock returns
viii

. Hence, in summary, the result of the sample 
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means suggest positive consecutive trading and negative non-trading mean return effects 

in the market. Moreover, it seems that the longer the non-trading period the higher the 

negative market means return effect.  

 

When the market is closed, returns following holidays (kC = 1) seem to show consistently 

high positive returns for all the three time periods. Moreover, the weekend effect  

(kC = 2) seem to have moved from a positive anomaly to a negative but close to zero non-

anomaly after 1987. Hence, our results seem to suggest a shift away from the well-known 

weekend anomaly effect. For the sub-period 1983-87 I find a high positive weekend effect 

well beyond other weekdays average consecutive trading day returns. The same result 

dominates the whole period 1983-94. However, studying the period 1987-94 we find a 

negative and close to zero average weekends return. This average return is below the 

other days’ average consecutive trading day returns. The well known weekend or Monday 

effect seems to have moved from a positive before the crash to a negative and close to 

zero return after the crash. 

 

Table 3 reports the main results for the grand return variances. In the right most columns 

of Table 1, the average variance ratio for each sample period and non-trading duration k 

are presented. Variance ratios are determined by dividing variance measured over k+1 

non-trading days for kO = 1,2,3 in an open market and kC = 2 (weekends) and kC = 1 

(holidays) in a closed market, by the variance of consecutive day (k = 0) returns
ix
. If 

returns follow a random walk, the variance ratios of each trading day category k should 

equal k + 1. This hypothesis is set out below. 

Hypothesis 4: 

H0 : 1
 0)=k  | Var(Robs

 )k  | Var(Robs O/C  k ,  for kO = 1, 2, 3, and kC = 1, 2, 

HA :  1
 0)=k  | Var(Robs

 )k  | Var(Robs O/C  k ,  for kO = 1, 2, 3, and kC = 1, 2. 

The conventional method of using the F-test
x
 for testing variances of samples is to take 

their ratio, adjust for degrees of freedom and compare this to one. In our case to perform 

the F-test in this fashion, one must first multiply Var0 by k+1 or divide Vark+1 by k + 1 and 

then proceed with the conventional method. For example, a variance ratio based on two-

day returns with k = 1 day of non-trading should equal two. 

 

{Insert Table 3 about here.} 

 

Employing an F-test for each period and for each non-trading category k, the null 

hypothesis at 5% is shown by a * to the right of each k for all five samples and sub-

periods. Table 3 show that for all three periods and all non-trading periods (k=1,2,3) in an 

open market, the random walk hypothesis is not rejected. Variances for periods that 
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include one or more k-days of non-trading appear to be equal to the prediction of the 

random walk model. This suggests that the return variances are created both on trading 

and non-trading days
xi
 in an open market. Consider the variance ratio over the entire 

sample period for kO = 1, that is 2.189. If return variance on the first day of trade after a 

one-day non-trading period is equal to consecutive day variances, then the non-trading 

day variance is 109.5% of the variance over 1 consecutive trading days. The same 

number for a two-day (three-day) non-trading period is 85.12% (108.3%) variance of a 2 

(3) days period of consecutive trading.  

 

To consider the situation when the market is closed we study the weekend and holiday 

mean results. The kC-days will here be days when the market is closed. For all three 

periods and for both weekends (kC=2) and holidays (kC=1), the random walk hypothesis is 

strongly rejected. Variances on periods that include 1 or 2 days when the market is closed 

do not follow the prediction of the random walk model. This suggests that the return 

variances be created only when the market is open regardless of trading or non-trading 

periods. 

 

We now want to explore the conjecture that the return variances are created primarily on 

days when active trading takes place in an open market. Such a test is performed by 

using the hypothesis that the variances of consecutive days of trading when the market is 

open, are equal to the variances of those periods that include non-trading days when the 

market is open (kO=1,2,3) and closed (kC=2 (weekends) and kC=1 (holidays)).  This is 

equivalent to testing the hypothesis that the ratio of variances is one: 

Hypothesis 5: 

H0 : 1
 0)=k  | Var(Robs

 )k  | Var(Robs O/C  ,  for kO = 1, 2, 3, and kC = 1, 2, 

HA : 1
 0)=k  | Var(Robs

 )k  | Var(Robs O/C  ,   for kO = 1, 2, 3, and kC = 1, 2. 

Table 3 shows that this null hypothesis is rejected over all three periods for non-trading 

days in an open market. In contrast, the null hypothesis is not rejected over the two non-

trading days in a closed market. That is, for weekends and holidays when the market is 

closed the variance is constant; for non-trading days when the market is open, the 

variance is kO + 1 the variance of consecutive days of trading. Hence, return variances 

show activity in an open market regardless of trading and non-trading. 

 

Our results cannot reject the Lo and MacKinlay (1990) proposition that the variance 

increases during non-trading. However, the increase is relative to consecutive day 

variance ratios. When the market is open the variance ratio is proportional to kO number 

of non-trading days. Hence, the variance is independent of trading or non-trading but 

requires an open market. The random walk model and Brownian motion of asset returns 
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is therefore independent on trading volume in an open market. These results suggest that 

the return generating process is enduring and constant as long as the market is open. In 

contrast, during weekends and holidays (kC) when the market is closed, the return 

generating process halts. Hence, the hypothesis of Scholes and Williams (1977) and Lo 

and MacKinlay (1990) is not rejected when the market is open, while the opposing 

hypothesis in Ross (1989) is not rejected when the market is closed. As a consequence, 

the results imply that information is immediately assimilated in an open market. When the 

market is closed no information is assimilated and an accumulation takes place. This 

accumulated information may explain the extra volatility at open found by McInish and 

Wood (1990). Moreover, the extra volatility at close also found by McInish and Wood 

(1990) may be explained by approaching a period of no information assimilation. 

Overnight the information is accumulated, which imply increased volatility at open.  

 

Our results also imply that changes in the information flow do not influence the pricing 

processes in the market over time. It is the market mechanism itself that seems to affect 

the pricing process. Therefore, a continuously open market may imply a constant time 

proportional variance for individual assets without start and stop of variance processes. 

For individual investors the results imply that in a closed market, no price processes are at 

work. However, the information flow does not stop and will accumulate in closed markets. 

Some extra attention from investors is therefore warranted at open and close of the 

markets. 

 

5.2   Variances - Adjusted for Non-synchronous trading 

 

Our results above suggest that any adjustment to the variance shown in (2), should not 

influence our findings. As shown in section 3 above, a test of this proposition is to assume 

that the occurrences of trades follow a Poisson distribution. This means that trades occur 

as a Poisson process with parameter , where  is the mean number of trades per period. 

Let s = 1 - u represent the time remaining in a given trading period after the last trade. 

Then s is distributed exponentially e
-s

  ( > 0) on 0  s < 1 with the probability of no trade 

during any trading day of PROB (s  1) =      



 e ds es

1

. If s is conditioned on at least 

one trade per trading day, the density function is f s
e

e

s

( ) ,




 



 

1
 0  s < 1. Given 

the density function f(s) above, and remembering that u = 1 - s, the conditional variance of 

u is calculated using integration by parts: 

 

 
Var u

e e e e

e e
( )

( )

( )


      

    

 



 



   

 

2 2 2

2 2

3 3

1 1
              (5) 
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Substituting equation (5) into equation (2) above provides the relationship between the 

observed variance and the true variance, given that the process describing trades is 

Poisson. Therefore,  

        

   

    
)1(

11

33
2)|( 2

22

222
2 






















k
ee

eeee
kRVar obs 










. (6) 

 

All the inputs necessary to relate the measured variance to the true variance are now at 

hand. If an empirical estimate is used for , the mean arrival rate of transactions, then this 

model provides an approximation of how much of the observed variance due to non-

synchronous trading and provides a means to correct measured variances for non-

synchronous trading. Equation (6) captures the general form of the relationship between 

observed and true variance. As in Scholes and Williams case, the observed variance is 

dependent on the mean return and always overstates the true variance of returns. 

Increasing time between trades increases the observed variance. And as  increases, the 

observed variance quickly approaches the true variance; in other words, as trading 

becomes more frequent, measurement problems diminish. This is illustrated in Figure 3. 

 

{Insert Figure 3 about here.} 

 

To estimate , the mean number of trades per period, we take the number of trading days 

(days on which trading volume > 0) and divide by the total number of possible trading 

days. If one trading day is taken to be one period, this provides an approximation of the 

empirical probability density of trading for one day. This estimate can then be used to 

estimate . The Poisson process is given by P X x
x

e
x

( )
!

 








 

 
 where x = the 

number of trades, and  = mean number of trades per period. The probability of no trading 

is P X e e( )
!

 








   0

0

0  
. Therefore, 

 =  - ln (P (X = 0)) .               (7) 

For P (X = 0) we substitute the percentage number of days in one year on which there are 

no trades. Now using equation (5) and (6) the true variance 
2
 can be estimated because 

all other variables are known empirically. Using observed means and variances from the 

results above and estimated ’s using equation (7), estimates of true variances are 

calculated according to equation (5) and (6) and presented in Table 4. Rearranging 

equation (6); 
 

1

)(2)|( 2
2






k

uVarkRVar Obs 
 . 
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As the mean transaction arrival rate increases, the variance of u, the time between the 

beginning of the day and the last trade is reduced. Given k constant and i =   0 for all 

assets i, more thinly traded stocks will have bigger adjustments to measured variances. 

And, for a particular i and  , as the length of the trading period increases, the correction 

to measured variances diminishes at a rate 
1

1

k
. 

 

In Table 4, the significance levels in Table 3 prevail for each variance ratio test after 

adjusting for non-synchronous trading and non-trading when the market is open and 

closed. In fact, the magnitudes of the adjustments for non-synchronous trading do not 

materially affect the comparisons. Non-synchronous trading alone is unable to explain the 

difference in return variance between trading and non-trading periods when the market is 

open and closed. These results therefore confirm our findings in Section 5.1, which 

implied that non-synchronous trading should not affect our results. 

 

{Insert Table 4 about here.} 

 

6  Summary and Conclusions 

 

The main result of this study indicates that return variances are related to whether or not 

the market is open. In particular, return variances over non-trading periods from 1 to 3 

days in an open market appear to be equal to k+1 the return variances over consecutive 

periods of trading as implied by the random walk model. However, return variances over 

non-trading periods of 1 to 2 days in a closed market appear to be equal to the return 

variances over one consecutive day of trading. Hence, in all three sub-periods, (1) 

variances for all non-trading periods in an open market do conform to the random walk 

model and (2) variances for all non-trading periods when the market is closed do not 

conform to the random walk model. The economic interpretation is that even though we 

assume that the information flow is almost constant, it is the market mechanism that 

influence and directs the pricing processes. Hence, a continuous open market may 

produce a constant proportional variance for individual assets irrespective of trading 

intensity and non-trading. 

 

The model of non-synchronous trading was also developed to allow for correction of the 

measurement error inherent in periods of infrequent trading. We assume a Poisson 

distributed trade arrival process. Consistent with other findings (Scholes & Williams 

1976,1977 and Lo and MacKinlay, 1990), the model analytically shows that while 

observed mean returns are unbiased, observed variances consistently overstate true 

variances. Hence, our results imply that the longer the non-trading period the lower the 

measurement error for variance calculations. Despite the correction for non-synchronous 
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trading, the results remain materially unchanged. With reference to our first findings, this 

result was to be expected.  

 

The paper may therefore conclude that variances are not affected of trading or non-

trading processes in an open market. However, when markets are closed the variances is 

nearly unchanged. A continuous open market (24 hours) may therefore produce a 

constant variance parameter in the random walk model, that is, a time proportional 

volatility. 
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i
 Weekend returns are measured from Friday close to Monday close. Hence, 3 days 

return with 2 days of non-trading in a closed market. Holiday returns are measured from 

close on the day before one-day holiday to close on the day after one-day holiday. Hence, 

2 days return with 1 day of non-trading. 

  
ii Lo and MacKinlay used the returns of ten size-sorted portfolios for daily, weekly and 

monthly data from 1962 to 1984. The study confirms the earlier results in Lo and 

Mackinlay (1990c). Using portfolio returns imply that the study is mainly a correlation 

study. Our study is slightly different from Lo and MacKinlay’s. Firstly, we employ individual 

stocks. This makes mean and variance characteristics for divergently traded stocks 

possible as observed trading volume is available. Secondly, for each asset in the sample 

we calculate the multiple-day returns and variances including one or more non-trading 

days. For each asset in the sample these multiple returns and variances will be compared 

to returns and variances measured over consecutive trading days given that the number 

of non-trading days in each multiple-day return observation is known. Finally, sample 

averages of returns and variances are calculated. These numbers are used to calculate 

ratios. Consequently, the relation of measured returns and variances to true returns and 

variances in the presence of non-synchronous trading and non-trading when the market is 

open and closed conditional on a known number of non-trading periods must be worked 

out. The random walk model with normal i.i.d. increments is used as starting point. 

 
iii
 kO non-trading days in an open market; kC is non-trading days in a closed market. 

 
iv
 This feature will also exclude holidays on Monday and Friday in the samples. 

 
v
 Excluding the most frequently traded assets from the weekend and holiday samples 

does not materially change our finding. 

 
vi
 We associate non-trading with zero trading volume, k=0 means consecutive days of 

trading. Non-trading periods lower than 3 days implies that only observation within the 5 

weekdays is accounted for in the calculations. 

 

vii
 The t-statistic use:  t = 

( / ( ))R kk  1 


, where Rk is k non-trading days return, m is 

the consecutive days of trading return,  is the standard deviation, k is the number of non-
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trading days. The statistic gives the probability that |t| takes a value greater than the 

calculated value for the stated degrees of freedom. This is thus a two-tailed test. 

 

viii
 An non-parametric integrated hazard function is therefore of considerable interest. 

 

ix
 Note that all variance ratio calculations are done within the same asset and the numbers 

we report are the average over all the assets in the sample. 

 

x
 The F-test use: 




1

2

1

2

2

2

/

/

f

f
 , where 

2
1 and 

2
2 are independent  2

 variables with f1 and 

f2 degrees of freedom respectively 

 

xi
 Heinkel and Kraus (1988) suggest a model of non-trading stocks, which may fit the 

empirical data well. These authors assume that the return variance of individual stocks on 

days in which they do not trade is equal to the return variance of the market portfolio. 

Asset specific information accumulated over non-trading days is then aggregated onto the 

first day of trade following a non-trading period. They then estimate betas through an 

iterative GLS procedure. 


